Bioscience - general

Discipline Group: 


Traversing a Political Pipeline: An Intersectional and Social Constructionist Approach Toward Technology Education for Girls of Color

First, this paper argues that applications of SCOT in feminist science and technology studies (STS) have largely focused on analyzing how gender and technology are coproduced, resulting in lack of scholarship that examines the mutually constitutive relationship between technology, gender and other intersecting identity categories, such as race and class.


Science Centers and Afterschool Programs: Working Together for All Kids

In this article, we offer a glimpse into how science centers and afterschool programs are working together, along with valuable advice from seasoned institutions that can help you establish your own partnership.


Designing and Implementing an Elementary Science After School Field Experience

Field experiences provide an important opportunity for preservice teachers to observe and practice science instruction. Too often, insufficient time is allotted for elementary science instruction in the formal classroom. This paper outlines the opportunities and lessons learned from an after school field experience where preservice elementary teachers worked in two-person teams with a classroom mentor teacher at local elementary schools and community centers to deliver two science lessons per week during an elementary science methods course.


Gender Differences in Conceptualizations of STEM Career Interest: Complementary Perspectives from Data Mining, Multivariate Data Analysis and Multidimensional Scaling

Data gathered from 325 middle school students in four U.S. states indicate that both male (p < .0005, RSQ = .33) and female (p < .0005, RSQ = .36) career aspirations for being a scientist are predictable based on knowledge of dispositions toward mathematics, science and engineering, plus self-reported creative tendencies. For males, strong predictors are creative tendencies (beta = .348) and dispositions toward science (beta = .326), while dispositions toward mathematics is a weaker (beta = .137) but still a significant (p < .05) predictor.


Alignment of Hands-on STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

 This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in activities such as an after-school robotics program. Both groups are compared and contrasted with a third group of high school students admitted at the eleventh grade to an academy of mathematics and science.

Validation of the Teaching Engineering Self-Efficacy Scale for K-12 Teachers: A Structural Equation Modeling Approach

Background: Teacher self-efficacy has received attention because of its direct relationship with teachers’ classroom behaviors. Since engineering has been increasingly introduced in K-12 (precollege) education, development of an instrument to measure teachers’ self-efficacy in the context of teaching engineering has been needed.

Purpose (Hypothesis): This study reports the development and validation of the Teaching Engineering Self-Efficacy Scale (TESS) for K-12 teachers.


Teacher Efficacy and Attitudes toward STEM (T-STEM) Survey

Each of the five Science, Technology, Engineering, Mathematics, and Elementary Teacher Efficacy and Attitudes toward STEM Surveys (T-STEM) contains six scales (sets of surveys items that most confidently describe a single characteristic of the survey-taker when the responses to these items are calculated as a single result). The first scale is called the Personal STEM Teaching Efficacy Belief Scale (PSTEBS) and consists of Likert-scale questions which ask the respondent about their confidence in their teaching skills.


The Wilder Collaboration Factors Inventory

The inventory is a free tool to assess how your collaboration is doing on 20 research-tested success factors. It takes about fifteen minutes to complete. It can be distributed to a small group of leaders in the collaborative, during a general meeting, or via mail to all members for the most complete picture. You can tally your score manually or online.  


Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science

Helping students develop informed views of nature of science (NOS) has been and continues to be a central goal for kindergarten through Grade 12 (K–12) science education. Since the early 1960s, major efforts have been undertaken to enhance K–12 students and science teachers’ NOS views. However, the crucial component of assessing learners’ NOS views remains an issue in research on NOS.

Utilizing Collaboration Theory to Evaluate Strategic Alliances

Increasingly, collaboration between business, non-profit, health and educational agencies is being championed as a powerful strategy to achieve a vision otherwise not possible when independent entities work alone. But the definition of collaboration is elusive and it is often difficult for organizations to put collaboration into practice and assess it with certainty. Program evaluators can assist practitioners concerned with the development of a strategic alliance predicated on collaboration by understanding and utilizing principles of collaboration theory.