A Model of Factors Contributing to STEM Learning and Career Orientation

A Model of Factors Contributing to STEM Learning and Career Orientation

DESCRIPTION

The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive career theory provided the foundation for the research because of its emphasis on explaining mechanisms which influence both career orientations and academic performance. Key constructs investigated were youth STEM interest, self-efficacy, and career outcome expectancy (consequences of particular actions). The study also investigated the effects of prior knowledge, use of problem-solving learning strategies, and the support and influence of informal educators, family members, and peers. A structural equation model was developed, and structural equation modeling procedures were used to test proposed relationships between these constructs. Results showed that educators, peers, and family-influenced youth STEM interest, which in turn predicted their STEM self-efficacy and career outcome expectancy. STEM career orientation was fostered by youth-expected outcomes for such careers. Results suggest that students’ pathways to STEM careers and learning can be largely explained by these constructs, and underscore the importance of youth STEM interest.

All Resources
Publications

Author and publisher information is provided below. Note that many publishers charge a fee or membership for full access. Permission/access must be requested through the publisher or author directly.

PUBLICATION DETAILS

Type: 

Author: 

Publisher: 

Topic(s): 

Publication Year: 

2015