
Scratch Encore: The Design and Pilot of a Culturally-Relevant
Intermediate Scratch Curriculum

Diana Franklin
∗
, David Weintrop

†
, Jennifer Palmer

∗
, Merijke Coenraad

†
, Melissa Cobian

‡
,

Kristan Beck
‡
, Andrew Rasmussen

‡
, Sue Krause

∗
, Max White

∗
, Marco Anaya

∗
, Zachary Crenshaw

∗

∗
University of Chicago, Chicago, IL, USA

†
University of Maryland, College Park, College Park, MD, USA

‡
Chicago Public Schools, Chicago, IL, USA

{dmfranklin,jenpalmer,sgkrause,mnwhite,manaya,zcrenshaw}@uchicago.edu;{weintrop,mcoenraa}@umd.edu;

{mcobian1,klbeck1,arasmussen}@cps.edu

ABSTRACT
While several introductory computer science curricula exist for

children in K-8, there are few options that go beyond sequence,

loops, and basic conditionals. The goal of this project is to not only

fill this gap with a high-quality curriculum supported by complete

instructional materials, but to also do so with an equity-balanced

curriculum. That is, a curriculum that values advancing equity

equally with student learning outcomes. In this paper, we intro-

duce barriers to equity in public school classrooms, pedagogical

approaches to culturally-relevant curricula, and how our Scratch

Encore curriculum is designed to support equity-balanced learn-

ing. Finally, we present results of our pilot year, including early

evidence of students taking advantage of the culturally-relevant

design aspects.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Computational thinking;

KEYWORDS
Computational Thinking; Scratch; K-12 education; Culturally-Relevant

Instruction

ACM Reference Format:
Diana Franklin

∗
, David Weintrop

†
, Jennifer Palmer

∗
, Merijke Coenraad

†
,

Melissa Cobian
‡
,, Kristan Beck

‡
, Andrew Rasmussen

‡
, Sue Krause

∗
, Max

White
∗
, Marco Anaya

∗
, Zachary Crenshaw

∗
. . Scratch Encore: The Design

and Pilot of a Culturally-Relevant Intermediate Scratch Curriculum. In The
51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20),
March 11–14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3328778.3366912

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SIGCSE '20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03…$15.00
https://doi.org/10.1145/3328778.3366912

1 INTRODUCTION
Succeeding in the goal of bringing computer science (CS) to all

students requires high-quality, sustained efforts throughout K-12

education. Increasingly, CS and computational thinking (CT) are

recognized as essential topics for all students. Most parents (90%)

want CS instruction for their children [45]. In response to these

trends, school districts across the United States, including San Fran-

cisco, New York, and Chicago, have pledged to bring CS experiences

to all students in their schools through large-scale CS initiatives.

Chicago Public School District (CPS) is at the forefront of the CS

for All movement. In 2013, CPS announced CS4All, an ambitious

plan to bring computer science to all students, pledging to a) teach a

high-quality, relevant computer science course at every high school,

b) offer coursework in 25% of elementary schools (defined as K-8),

and c) make computer science a core graduation requirement. As of

2017, CPS has introduced CS in 90 of 477 elementary schools, 63 of

106 district-run high schools, and added a computer science gradu-

ation requirement for students starting high school in 2016. They

have now updated their pledge of 25% of elementary schools to 75%.

It is within this context that the gap in high-quality intermediate

curriculum for upper-elementary students (ages 10-14) became a

barrier to equity.

Computer science high school curricula and teacher professional

development have been targets of NSF funding for several years,

and prominent organizations such as Code.org and Google have

created polished introductory teachingmaterials and training for in-

experienced elementary school teachers. These efforts have helped

make progress towards the goals of CS for all but introduce a gap

for schools to fill between heavily scaffolded introductory courses

and more advanced programming courses designed for high school

students. The extremes of expensive commercial solutions or free,

ad-hoc, individual activities available at this level feed inequity by

requiring either money or high teacher expertise. This situation dis-

proportionately impacts students in under-resourced schools that

often serve students of underrepresented minorities in computing.

In order to fill this gap, we introduce Scratch Encore, an inter-

mediate Scratch curriculum for formal learning environments that

balances goals of culturally-relevant curriculum design, Construc-

tionist learning principles, and working within the constraints of

formal learning environments and teachers who may be relatively

inexperienced with the content.

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

794

https://doi.org/10.1145/3328778.3366912

This paper presents the design of Scratch Encore, followed by

an exploration of two, interrelated research questions related to

our pilot study: (1) How do teachers perceive it? And (2) Is Scratch

Encore succeeding in providing opportunities for creativity and

cultural expression while also introducing computing concepts in

a structured way? And if so, how is the curriculum enabling it?

2 THEORY AND PRIORWORK
In this section, we present the major theoretical and practical in-

fluences that have shaped the Scratch Encore curriculum and in-

structional materials. This includes prior work on elementary CS

education, curricula and computing education outreach initiatives

designed to broaden participation in the field, and work on elemen-

tary CS learning trajectories.

2.1 Programming Environments
While traditionally a subject for high school and beyond, there is

growing demand for bringing CS into K-8 classrooms. Early work

by Papert and colleagues found that programming was accessible to

younger students and could serve as a powerful pedagogical strat-

egy [20, 33, 34]. In the last decade, bringing CS to K-8 has grown in

popularity and has been facilitated by programming tools designed

for young students [11, 23]. An increasingly popular approach for

creating engaging and accessible programming environments is

the graphical, block-based programming interface [1, 47]. Visual

block-based languages use a programming-command-as-puzzle-

piece metaphor to visually render syntax rules and allow users

to use a drag-and-drop approach to construct programs. Block-

based programming tools provide numerous scaffolds that make

programming easier, including limiting syntax errors, providing

visual cues on how commands can be used, and providing an easy

way to browse available commands [48]. Block-based programming

interfaces have been used to create an array of programming envi-

ronments and tools, including museum exhibits [22], libraries for

controlling robots [29], and tools for creating mobile applications

[9].

2.2 Pedagogical Approach
Much of the curricular and programming environment design effort

for younger students has drawn inspiration from the Construction-

ist design and learning approach [33]. Constructionism emphasizes

focusing on the powerful ideas of a discipline, and foregrounds

learning-by-doing, giving students opportunities to construct per-

sonally meaningful, public artifacts. Constructionist learning expe-

riences are often designed so as to give the learner agency in the

activity, enabling self-directed learning and supporting exploration

in the process of constructing public and shareable artifacts. Addi-

tionally, Constructionist designs provide students opportunities to

present their work to peers and share their ideas and experiences

through teacher-led classroom discussions. Providing a public fo-

rum for students to share their ideas, experiences, and programs

encourages students to become more invested in their own learning

and promotes an inclusive learning environment in which all stu-

dents can see themselves as members of a computing community.

This focus on student-driven learning, not specific technical con-

tent, has coincided with work in informal spaces [28] and placed

an emphasis on self-directed learning and online collaboration [15,

39] and the practices of computing [3].

There is also a growing library of curricula designed for early

elementary learning created using specially-designed programming

environments that lead students through a more structured experi-

ence. This includes curricula design by Code.org [6], the Founda-

tions for Advancing Computational Thinking (FACT) curriculum

[19], and the Creative Computing curriculum [4]. A middle-ground

between student-driven learning and more structured activities

can be seen in San Francisco Unified School District’s Introduc-

tion to Computer Science, which provides instruction on specific

CS concepts, followed by an open-ended project that follows Con-

structionist principles. A common strategy used in these and other

introductory computing curricula used in K-8 is the Use->Modify-

>Create approach, which begins by having students use functional

programs that demonstrate the concept being taught before mak-

ing modifications to an existing program and then finally being

given an opportunity to create a new program on their own [27].

This strategy provides a scaffolded approach to introducing new

concepts while also retaining aspects of Constructionist learning.

2.3 Culturally-Relevant CS Curricula
A major contribution of the field of Learning Sciences is the recog-

nition that aligning content with the culture, prior experience, and

social values and norms of the learner can improve retention, en-

gagement, and learning outcomes [26, 30, 32, 38]. Examples of

culturally-responsive curricula [25, 18] can be found across math

[31], science [14], and English language arts [8]. In computer sci-

ence, culturally responsive computing curricula follow many of the

same principles [42, 12, 43].

We view culturally-relevant curriculum development as consist-

ing of four dimensions, not all of which are required to be in every

learning experience. First, when explaining concepts, examples

should be used that are drawn from students’ current understand-

ings and experiences, what Papert called "cultural syntonicity" [33].

Second, when possible, culturally-relevant curricula should draw

upon the cultural heritage of students so as to help increase their

sense of belonging. This can take the form of including visual ele-

ments drawn from their culture or situating programming activities

within contexts that carry cultural significance with groups of stu-

dents [18, 25]. Third, culturally-relevant curricula can draw upon

current youth culture, such as social practices (e.g. texting), media

and video games (e.g. Fortnite), or other elements associated with

youth culture. Examples of following these design approaches can

be seen in the Animal Tlatoque summer camp [17], which was built

around themes of Mesoamerican culture and animal conservation

and Code.org’s approach of partnering with major entertainment

properties such as Star Wars, Flappy Bird, and Minecraft. Another

approach for introducing computing ideas in a culturally relevant

way is to engage students in artistic endeavors such as making

[2, 5, 46, 21] and image and sound manipulation [16, 13]. In such

contexts, computing is used as a medium for students to partici-

pate in activities that align with their culture, be it youth culture

(e.g. music-making) or historical culture (e.g. beading or sewing).

Finally, beyond the cultural resources integrated into the learning

activity, all students should have creative opportunities to tailor

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

795

the projects to their own selves. For example, the Exploring Com-

puter Science curriculum accomplishes this goal by framing “CS

learning around [students’] own questions and interests, culturally-

relevant pedagogy drawing on students’ funds of knowledge, and

core CS concepts relating to our everyday uses of new technology

and participatory media” [40].

2.4 Computer Science Learning Progressions
While several approaches to computing education have been stud-

ied, there have been few systematic studies that investigate learning

trajectories for students across several grades. We will draw upon

two bodies of knowledge: The K-12 Computer Science Framework,

which is being used to inform standards across the country [24] and

learning trajectories developed using learning goals drawn from a

literature of over 100 computer science education publications and

organized by concept or practice, including sequence, repetition,

conditionals, decomposition, and debugging [37, 36, 35].

2.5 Barriers to Equity
The lack of freely-available intermediate CS courses for elementary

students is a barrier to equity. Instead of having complete, well-

organized and structured curricula, teachers often search online

for individual lessons and then adapt them to their needs creating

their own curriculum one piece at a time. Alternatively, schools

purchase closed packages that provide all-in-one solutions but are

often costly to the school or district. These strategies are ill-suited

for under-resourced schools without an experienced CS teacher.

An alternative venue for learning about CS is through informal

venues, such as after-school programs, cultural institutions (e.g.

museums), libraries, or summer camps. While such approaches

provide a productive introduction to computing, they often lack

the level of in-depth and extended exposure that formal classrooms

afford. Also, many of these opportunities require investments from

the attendees, either in the form of fees (e.g. registration, materi-

als) or transportation requirements (e.g. pick-up/drop-off at certain

times/places), producing inequitable access and reaching only a

small, unrepresentative portion of the population. Finally, informal

CS opportunities often do not connect with in-school opportuni-

ties, meaning interest developed does not necessarily transfer to

enrollment in further computer science learning opportunities. Ad-

ditionally, while free resources do exist, they are often difficult to

find or require parents to have prior knowledge of their existence

in order to take advantage of them, which further reinforces the

disparity in equity and access [10].

3 SCRATCH ENCORE DESIGN
Scratch Encore[44] is a 2-3 year intermediate Scratch curriculum

designed for students who have had a least one year of introductory

coding (e.g. Code.org’s CS Discoveries, Creative Curriculum, or any

other curriculum that covers sequence, loops, and conditionals).

Scratch Encore is comprised of 15 learning modules, each of which

is 4-5 class sessions in length and follows the same structure. Below

we present the two defining features of Scratch Encore - multiple

strands that provide different themes for the same learning modules

and the within-module flow of Use->Modify->Create - followed by

Figure 1: Multiple Strands providing three choices of
Use/Modify activities for the first 6 modules.

Figure 2: Common module design with two activities.

how those features satisfy our overall goals of balancing equity and

learning in a formal learning environment.

The first defining feature of Scratch Encore is its modular, se-

quential structure (Fig. 1). Scratch Encore is comprised of 15 mod-

ules, each covering a different topic (the columns in Fig. 1). At the

same time, each module can be taught using one of three strands

(the rows in Fig. 1). Each strand situates the content of the activ-

ities within a specific context designed to resonate with youth.

Looking across the strands, each module covers the exact same

computer science material, just with a different graphical presenta-

tion. Scratch Encore currently includes three strands: Multicultural,

Youth Culture, and Gaming. The Multicultural strand draws on

celebrations, events, or traditions, including many that are used or

celebrated by cultures often not highlighted in dominant Ameri-

can culture. These include the Million Women March, Dia de los

Muertos, and Martin Luther King Jr.’s famous “I Have a Dream”

speech. The second strand, Youth Culture, includes themes that

resonate with many youth today, including sports and social net-

works. The third strand is the Gaming strand, which was teachers’

top subject that they identified their students as wanting to learn

with computing. The strands and the specific contexts within them

were developed through participatory design sessions with various

education stakeholders, including teachers, students, parents, and

administrators[7]. As teachers progress through the 15 modules,

they can choose the strand that they think will best resonate with

their students (Figure 1).

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

796

The second defining feature of Scratch Encore is its lesson flow,

based on the Use->Modify->Create pedagogical approach [27] (Fig-

ure 2). Each module begins with an introduction to the concept

tying the content to examples from students’ everyday lives. Stu-

dents then receive example code and go through activities focused

on observing and exploring that code before making small modifi-

cations. Finally, the Create activity involves a largely open-ended

challenge where students are given design prompts that lead them

towards a project that can utilize the new concept. Throughout the

curriculum, care was taken to ensure the activities present authen-

tic uses of the content being taught. This means the code students

see as they go through the curriculum reflects how we would actu-

ally solve the problem, even if we had more advanced knowledge.

In this way, the curriculum not only teaches how a given concept

works but when to use it.

Designing for Culturally-Relevant Computing. Scratch Encore

consists of all four elements of culturally-relevant curriculum de-

sign discussed in section 2.3. Prior to the Use->Modify activity, an

Engage discussion relates the concept to students’ daily lives. For

example, synchronization is introduced with a knock-knock joke

in which the teacher uses the wrong timing with the students. The

Multicultural strand allows teachers to choose projects that res-

onate with the cultural heritage of students in their own classroom,

aligning with the second dimension of culturally responsive cur-

ricula. To align with contemporary youth trends and interests, the

Gaming and Youth Culture strands, as well as the Create prompts,

are designed around contemporary youth culture. Finally, students

are able to personalize projects and put something of themselves

into them. A first-level includes providing sprites with multiple skin

tones and varying gender representations. Deeper levels include

asking students to customize MLK Jr.’s speech to their own wishes

for equality and putting memories of their own family members in

the Ofrenda in Dia de los Muertos.

Designing for Student Variation in Skills / Exceptionalities. In order
to support variation in student skills, we utilize a TIPP&SEE learn-

ing strategy to step students through the provided example code,

mediated through a worksheet[41]. It leads students in purposeful

play with recorded observation, finding and making predictions

about code related to particular actions they observed, and deliber-

ate tinkering by making code changes to understand how individual

blocks work. Extensions to the Modify and Create activities allow

students to go above and beyond what is required if they are able

and interested. Finally, classrooms that need to review a topic can

repeat a module by choosing activities from a different strand.

Designing for Teacher Variation. In order to support teachers who
are new to CS, programming in general, or Scratch in particular,

Scratch Encore provides several resources. These include teacher

guides that provide key ideas to contextualize the learning goal(s)

of the module, “Engage” sections that guide teachers on how to

relate the concepts to students’ daily lives, automated analysis that

provides instant feedback on the state of completion for the whole

class, and quizzes to gauge student understanding.

Figure 3: TIPP worksheet guides students through mind-
fully playing and observing the provided Scratch project.

Figure 4: SEE worksheet guides students through finding el-
ements in the Scratch interface and deliberate exploration
(tinkering) to discover how blocks work.

3.1 Example Module: Events
To more clearly illustrate the principles enacted in Scratch Encore,

we provide details on Module 2: Events.

The module begins with an introductory discussion relating the

term events to daily life (holidays, life milestones) and redefining it

within computing (tapping on a shoulder, ringing a doorbell) and

then to the computer itself (clicking on a mouse, typing on the

keyboard). We then provide example code drawn from Mexican

culture - an Ofrenda set up for Dia de los Muertos. The example

program includes scripts for two sprites: the skeleton and the left-

most picture on the Ofrenda. The skeleton talks about Ofrendas

when the green flag is clicked, and the picture enlargeswhen clicked,

says something, and shrinks back down. Students are scaffolded in

their exploration of the project with a TIPP&SEE worksheet, shown

in Figures 3 and 4. TIPP orients students to the project and purpose

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

797

Figure 5: Planning document for a Create activity to encour-
age the use of multiple sprites and events.

and steps them through playing and recording observation of the

project execution. SEE asks them to navigate the Scratch interface

and find the code that performed the actions they observed. They

then step through small, deliberate modifications to learn how the

change size block works.

In the Modify step, students are invited to make the project

their own by choosing three special people or pets about whom

they would like to share memories or feelings. Many costumes

are provided to accommodate a variety of skin tones or animals.

Students choose costumes to fill each picture frame and then write

scripts to enlarge the sprite, say something about the subject in the

picture frame, and shrink the sprite back down.

In lesson 2, students create a project about a holiday. They are

asked to share different facts about the holiday. A planning docu-

ment is provided to help with the selection of sprites and events to

reinforce what they learned in Lesson 1 (Figure 5).

4 METHODS
In this section, we detail the recruitment of participants in our

study, followed by data collected and data analysis methods.

4.1 Recruitment and Participants
Teachers were recruited from a major metropolitan school district.

Twenty-seven teachers attended professional development, and

eight were included in our study. Interested teachers were chosen

for inclusion based on the number of courses they taught (preferring

more classes) and the grade levels (5th-7th grade preferred). In total,

there were 13 classes, 5th-8th grades, including 271 students.

4.2 Data Collection
Several types of datawere collected and analyzed, including TIPP&SEE

worksheets, observations, teacher interviews, teacher focus groups,

and student computational artifacts. Researchers observed instruc-

tion for each teacher three times during the school year (same

grade level, typically same classroom). Teachers were interviewed

following each observation and participated in focus groups with

other teachers at the end of the school year. Computational arti-

facts were publicly available online, organized by pilot teachers

into classrooms and studios for analysis.

4.3 Data Analysis
Data was analyzed to answer two overall questions, one about the

use of Scratch Encore materials, and a second about student use of

the second module - Events.

Scratch remix histories were used to determine the number of

classrooms and students completing Scratch Encore projects as

well as how far each classroom progressed through the curriculum.

Timestamps for remixed projects were used to calculate the pace

and frequency that classrooms completed activities.

First, worksheets were coded for accuracy and completeness.

Second, artifacts from a subset of students in pilot classrooms were

analyzed to understand in what ways students completed tasks

beyond the requirements of the project. Finally, static analysis mod-

ules were coded in JavaScript that analyzed the code in all projects

in a studio and produced a spreadsheet of results. These looked for

not only the required elements, but also examples of the types of

additional actions that were found through hand inspection.

5 RESULTS
Here we present teacher feedback and a case study of Module 2

- Events. Specifically, we want to know to what degree students

engage with the activities in the ways intended, taking advantage of

opportunities for personalization and creativity within the learning

structure.

5.1 Teacher Feedback
We next present teacher feedback, separated into three categories:

overall impressions of the curriculum; comments that specifically

address the engagement aspects of the curricular design; and com-

ments about the materials and design for learning.

Overall, feedback was incredibly positive for using Scratch En-

core. On Likert scale questions from 1-5, teacher responses were

an average of 4.29 / 5 for Scratch Encore being successful in their

classroom and 4.38 / 5 for it being engaging to their students. The dif-

ficulty was appropriate, answering 2.97 / 5 to a question of whether

the material was too difficult (1) or too easy (5). One teacher identi-

fied “Starting with the basics of Scratch and explaining everything...I
like having the detailed lessons of what to do and the extension idea
and special note boxes with Scratch skills” as a strength of the cur-

riculum.

Three modules were specifically mentioned as being relevant

to the students - the Ofrenda as a “cultural learning tool”, the pub-
lic transportation as “relevant” to their own lives, and the soccer

module for “familiarity, ease, and relevance.”
When asked what their favorite elements were or the biggest

strength of the curriculum, several teachersmentioned the TIPP&SEE

“worksheet” or “process”. One teacher said, “I also like having my
students do an old school worksheet, because it helps them to think
about what they just learned and I can use them as exit tickets/mini
assessments.” Different teachers identified all aspects of the Use-

>Modify->Create approach as a favorite or strength. One liked “the
given starting code for one of the animals,” another “Experimenting

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

798

Figure 6: Percentage of students who used each of the intro-
duced Scratch blocks in their Create lesson projects.

with code to show how changes made things go faster or slower,” and a
third noted that “They always enjoy the creative aspect of modifying
the project.” Several pointed out the open-ended Create lessons as

favorites. Finally, several teachers identified our graphical orga-

nizers for broadcast/receive as a strength, writing “The broadcast
concept was best understood visually on the worksheet.”

Finally, teachers noted that the lessons took more time than

anticipated. Specifically, some Use->Modify activities required two

class periods - one to explore the project and one to modify the

project. In addition, students would be able to complete larger

Create projects if given two days to plan and implement the projects.

5.2 Events Case Study
We now take a deep dive into one module to see to what degree

the different design elements resulted in desired behaviors in stu-

dents. We focus on three aspects of Module 2 - Events. We are

specifically concerned with whether students were still able to be

creative and explore within the structure of Use->Modify->Create

and whether the culturally-relevant design strategies resulted in

students personalizing their projects.

In Lesson 1, Events Ofrenda, students had a highly structured

project in which they were asked to choose important people or

pets, make scripts that expanded their size when clicked, and put

in a Say bubble about the person/animal. We can see that within

this structure, students still explored beyond the required elements.

Our analysis shows that 4.92% of students changed the background

of the project, 31.32% of students added or made use of sounds, and

79.64% of students added or changed at least one new costume.

In Lesson 2, My Favorite Holiday, students create a project to

share information about their favorite holiday. The hope is that

because this is an open-ended project, students will incorporate

blocks they learned about in previous lessons. We can see the block

usage in Figure 6. The dark blue bars represent blocks that are

required for this activity. We can see that 60-90% of students used

the required blocks in their projects. In addition, over 80% used the

Say block which was used in the previous activity and introduced

in Module 1. At least 25% of students used size manipulation blocks

introduced in Lesson 1, and others used the Go To and Move blocks

from Module 1. A second important goal of a Create project is to

Figure 7: Students’ choice of holiday for their Create lesson
projects.

encourage students to explore blocks not yet introduced. We can

see that almost 75% of students used blocks not formally introduced

in the curriculum.

Finally, the purpose of the theme is to have students personalize

their project following culturally-relevant pedagogical principles.

We can see from Figure 7 that almost 80% of students did, indeed,

choose a holiday of some sort. Christmas was by far the most com-

monly chosen holiday (37.9%), with other mainstream American

holidays like Halloween (12.1%), Thanksgiving (3.1%), and Easter

(1.6%) having a notable presence. Several students paid homage to

their particular cultural heritage: Chinese New Year was the 5th

most popular holiday choice (1.9%), one student elaborated on the

customs of Day of the Dead, and another student chose Juneteenth,

a holiday commemorating African American freedom. A majority

of students chose holidays which they themselves celebrate and

that are culturally significant to them, with over 1/3 of students

incorporating their family into their projects. Other students took

a more flexible definition of holiday, using their own birthday as a

holiday, which 16.1% did, or celebrating less conventional holidays,

like national food days, or making up their own holiday.

6 CONCLUSIONS
This paper introduces Scratch Encore, an intermediate Scratch pro-

gramming curriculum 10-14 year olds. Scratch Encore integrates the

Use->Modify->Create pedagogical approach, culturally-relevant

pedagogy, and the TIPP&SEE learning strategy to create a set of

materials that attend to issues of equity while also introducing foun-

dational ideas of computer science. Finally, pilot results show high

teacher interest and desirable and productive student engagement.

7 ACKNOWLEDGEMENTS
We would like to thank the teachers and students who piloted

Scratch Encore. This material is based upon work supported by the

National Science Foundation under Grant No. 1738758.

REFERENCES
[1] David Bau et al. “Learnable programming: blocks and beyond”. In: arXiv preprint

arXiv:1705.09413 (2017).
[2] P. Blikstein. “Digital fabrication and ‘making’in education: The democratization

of invention”. In: FabLabs: Of Machines, Makers and Inventors. Ed. by J. Walter-

Herrmann and C. Büching. Tanscript Publishers, 2013, 1––21.

[3] K. Brennan. “Learning computing through creating and connecting”. In: Com-
puter 46.9 (2013), pp. 52–59.

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

799

[4] K. Brennan, C Balch, and M. Chung. Creative computing. 2014. url: http :
//creativecomputing.gse.harvard.edu/guide/.

[5] L. Buechley and H. Perner-Wilson. “Crafting Technology: Reimagining the

Processes, Materials, and Cultures of Electronics”. In: ACM Trans Comput-Hum
Interact 19.3 (Oct. 2012), 21:1–21:21.

[6] Code.org CS Curricula. url: https://curriculum.code.org/.

[7] Merijke Coenraad et al. “Enacting Identities: Participatory Design As a Con-

text for Youth to Reflect, Project, and Apply Their Emerging Identities”. In:

Proceedings of the 18th ACM International Conference on Interaction Design and
Children. IDC ’19. Boise, ID, USA, 2019, pp. 185–196. isbn: 978-1-4503-6690-8.

[8] Carol D Lee. “Is October Brown Chinese? A Cultural Modeling Activity System

for Underachieving Students”. In: American Educational Research Journal 38
(2001), p. 97.

[9] E. Spertus D. Wolber H. Abelson and L. Looney. App Inventor: Create Your Own
Android Apps. Sebastopol, California: O’Reilly Media, 2011.

[10] Betsy DiSalvo, Cecili Reid, and Parisa Khanipour Roshan. “They can’t find us:

the search for informal CS education”. In: Proceedings of the 45th ACM technical
symposium on Computer science education. ACM. 2014, pp. 487–492.

[11] Caitlin Duncan, Tim Bell, and Steve Tanimoto. “Should Your 8-year-old Learn

Coding?” In: Proceedings of the 9th Workshop in Primary and Secondary Com-
puting Education. WiPSCE ’14. Berlin, Germany, 2014, pp. 60–69. isbn: 978-1-

4503-3250-7.

[12] Ron Eglash et al. “Culturally responsive computing in urban, after-school

contexts: Two approaches”. In: Urban Education 48.5 (2013), pp. 629–656.

[13] Shelly Engelman et al. “Creativity in Authentic STEAM Education with EarS-

ketch”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE ’17. Seattle, Washington, USA, 2017, pp. 183–

188. isbn: 978-1-4503-4698-6.

[14] F. Erickson and K. Gutierrez. “Culture, Rigor, and Science in Educational Re-

search”. In: Educ. Res. 31.8 (2002), p. 21.
[15] Deborah A Fields, Michael Giang, and Yasmin Kafai. “Programming in the

wild: trends in youth computational participation in the online scratch commu-

nity”. In: Proceedings of the 9th workshop in primary and secondary computing
education. ACM. 2014, pp. 2–11.

[16] Andrea Forte and Mark Guzdial. “Computers for Communication, Not Calcu-

lation: Media As a Motivation and Context for Learning”. In: Proceedings of
the Proceedings of the 37th Annual Hawaii International Conference on System
Sciences. HICSS ’04. 2004, 10–pp. isbn: 0-7695-2056-1.

[17] Diana Franklin et al. “Animal Tlatoque: Attracting Middle School Students to

Computing Through Culturally-relevant Themes”. In: Proceedings of the 42Nd
ACM Technical Symposium on Computer Science Education. SIGCSE ’11. Dallas,

TX, USA, 2011, pp. 453–458. isbn: 978-1-4503-0500-6.

[18] G. Gay. “Culturally responsive teaching principles, practices, and effects”. In:

Handbook of urban Education. Ed. by H. R. Milner and K. Lomoty. Abingdon:

Routledge, 2013, pp. 353–372.

[19] S. Grover, R. Pea, and S. Cooper. “Designing for deeper learning in a blended

computer science course for middle school students”. In: Comput. Sci. Educ 25.2
(Apr. 2015), pp. 199–237.

[20] I. Harel and S. Papert. “Software design as a learning environment”. In: Interac-
tive Learning Environments 1.1 (1990), pp. 1–32.

[21] Nathan Holbert. “Leveraging Cultural Values and "Ways of Knowing" to In-

crease Diversity in Maker Activities”. In: Int. J. Child-Comp. Interact. 9.C (Dec.

2016), pp. 33–39. issn: 2212-8689.

[22] Michael S. Horn et al. “Frog Pond: A Codefirst Learning Environment on

Evolution and Natural Selection”. In: Proceedings of the 2014 Conference on
Interaction Design and Children. IDC ’14. Aarhus, Denmark, 2014, pp. 357–360.

isbn: 978-1-4503-2272-0.

[23] Caitlin Kelleher and Randy Pausch. “Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice Program-

mers”. In: ACM Comput. Surv. 37.2 (June 2005), pp. 83–137. issn: 0360-0300.
[24] K-12 Computer Science Framework. 2016. url: https://k12cs.org.
[25] G. Ladson-Billings. The Dreamkeepers: Successful teachers of African American

children. 2nd ed. United States of America: Josey-Bass, 2009.

[26] C. D. Lee. “The Culture of Everyday Practices and their implications for learning

in school”. In: Culture, literacy, & learning: Taking bloom in the midst of the
whirlwind. Teachers College Pr, 2007, pp. 227–238.

[27] Irene Lee et al. “Computational thinking for youth in practice”. In: Acm Inroads
2.1 (2011), pp. 32–37.

[28] John H. Maloney et al. “Programming by Choice: Urban Youth Learning Pro-

gramming with Scratch”. In: SIGCSE Bull. 40.1 (Mar. 2008), pp. 367–371. issn:

0097-8418.

[29] Amon Millner and Edward Baafi. “Modkit: Blending and Extending Approach-

able Platforms for Creating Computer Programs and Interactive Objects”. In:

Proceedings of the 10th International Conference on Interaction Design and Chil-
dren. IDC ’11. Ann Arbor, Michigan, 2011, pp. 250–253. isbn: 978-1-4503-0751-2.

[30] L. C. Moll et al. “Funds of Knowledge for Teaching: Using a Qualitative Ap-

proach to Connect Homes and Classrooms”. In: Theory Pract. 31.2 (Apr. 1992),
pp. 132–141.

[31] N. S. Nasir, V. Hand, and E. V. Taylor. “Culture and Mathematics in School:

Boundaries Between ‘Cultural‘ and ‘Domain‘ Knowledge in the Mathematics

Classroom and Beyond”. In: Rev. Res. Educ. 32.1 (Feb. 2008), pp. 187–240.
[32] N. S. Nasir et al. “Learning as a cultural process: Achieving equity through

diversity”. In: The Cambridge handbook of the learning sciences. Ed. by R. K.

Sawyer. Cambridge Univ Pr, 2006.

[33] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc., 1980. isbn: 0-465-04627-4.

[34] S. Papert et al. Final report of the Brookline Logo Project: Project summary and
data analysis (Logo Memo 53). Tech. rep. Cambridge, MA: MIT Logo Group,

Sept. 1979.

[35] Kathryn M. Rich et al. “A K-8 Debugging Learning Trajectory Derived from

Research Literature”. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. SIGCSE ’19. Minneapolis, MN, USA, 2019, pp. 745–

751. isbn: 978-1-4503-5890-3.

[36] Kathryn M. Rich et al. “Decomposition: A K-8 Computational Thinking Learn-

ing Trajectory”. In: Proceedings of the 2018 ACM Conference on International
Computing Education Research. ICER ’18. Espoo, Finland, 2018, pp. 124–132.

isbn: 978-1-4503-5628-2.

[37] Kathryn M. Rich et al. “K-8 Learning Trajectories Derived from Research

Literature: Sequence, Repetition, Conditionals”. In: Proceedings of the 2017 ACM
Conference on International Computing Education Research. ICER ’17. Tacoma,

Washington, USA, 2017, pp. 182–190. isbn: 978-1-4503-4968-0.

[38] B. Rogoff. The cultural nature of human development. Oxford Univ Pr, 2003.

[39] Ricarose Roque, Yasmin Kafai, andDeborah Fields. “FromTools to Communities:

Designs to Support Online Creative Collaboration in Scratch”. In: Proceedings
of the 11th International Conference on Interaction Design and Children. IDC ’12.

Bremen, Germany, 2012, pp. 220–223. isbn: 978-1-4503-1007-9.

[40] J. J. Ryoo et al. “Democratizing computer science knowledge: transforming

the face of computer science through public high school education”. In: Learn.
Media Technol. 38.2 (June 2013), pp. 161–181.

[41] Jean Salac et al. “TIPP&SEE: A Learning Strategy to Guide Students through

Use–>Modify Scratch Activities”. In: Proceedings of the 2019 ACM SIGCSE Tech-
nical Symposium on Computer Science Education. SIGCSE ’19. ACM. Portland,

OR, USA, 2019.

[42] K. A. Scott, K. M. Sheridan, and K. Clark. “Culturally responsive computing: a

theory revisited”. In: Learning, Media and Technology 40.4 (2015), pp. 412–436.

[43] Kimberly A Scott andMary AletaWhite. “COMPUGIRLS standpoint: Culturally

responsive computing and its effect on girls of color”. In: Urban Education 48.5

(2013), pp. 657–681.

[44] Scratch Encore. url: https://www.canonlab.org/scratchencoremodules.

[45] Searching for Computer Science: Access and Barriers in U.S. K-12 Education. Tech.
rep. Google, 2015.

[46] Kristin A. Searle and Yasmin B. Kafai. “Boys’ Needlework: Understanding Gen-

dered and Indigenous Perspectives on Computing and Crafting with Electronic

Textiles”. In: Proceedings of the Eleventh Annual International Conference on
International Computing Education Research. ICER ’15. Omaha, Nebraska, USA,

2015, pp. 31–39. isbn: 978-1-4503-3630-7.

[47] David Weintrop. “Block-based Programming in Computer Science Education”.

In: Commun. ACM 62.8 (July 2019), pp. 22–25. doi: 10 .1145/3341221. url:

http://doi.acm.org/10.1145/3341221.

[48] David Weintrop and Uri Wilensky. “To Block or Not to Block, That is the

Question: Students’ Perceptions of Blocks-based Programming”. In: Proceedings
of the 14th International Conference on Interaction Design and Children. IDC ’15.

Boston, Massachusetts, 2015, pp. 199–208. isbn: 978-1-4503-3590-4.

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

800

http://creativecomputing.gse.harvard.edu/guide/
http://creativecomputing.gse.harvard.edu/guide/
https://curriculum.code.org/
https://k12cs.org
https://www.canonlab.org/scratchencoremodules
https://doi.org/10.1145/3341221
http://doi.acm.org/10.1145/3341221

	Abstract
	1 Introduction
	2 Theory and Prior Work
	2.1 Programming Environments
	2.2 Pedagogical Approach
	2.3 Culturally-Relevant CS Curricula
	2.4 Computer Science Learning Progressions
	2.5 Barriers to Equity

	3 Scratch Encore Design
	3.1 Example Module: Events

	4 Methods
	4.1 Recruitment and Participants
	4.2 Data Collection
	4.3 Data Analysis

	5 Results
	5.1 Teacher Feedback
	5.2 Events Case Study

	6 Conclusions
	7 Acknowledgements

