(())

## **OLD DOMINION UNIVERSITY**

Frank Batten College of Engineering & Technology

125 / 116 Kaufman Hall Old Dominion University Norfolk, VA 23529

## VETERAN'S MAKER WORKSHOP FEATURING BIOINSPIRED ROBOTICS



EAGER: Understanding the Impact of Making on Veterans in Pursuing STEM Degrees Project #1749566, Funded by the National Science Foundation

## Monarch Maker Workshop Schedule

| DAY 1               | Activities                                       | Duration      |              |
|---------------------|--------------------------------------------------|---------------|--------------|
| 8:00 am – 9:00 am   | Pre-workshop Assessment Surveys                  | 1 hr.         | A. Dean      |
| 9:00 am – 9:45 am   | Bio-Inspired Robotics: Introduction to           | 45 min.       | K. Kaipa     |
|                     | principles of bio-inspired robotics, legged      |               |              |
|                     | robots, and walking gaits.                       |               |              |
| 9:45 am – 10:00 am  | Break                                            | 15 min.       |              |
| 10:00 am - 12:00 pm | Arduino: Introduction to microcontrollers,       | 2 hrs.        | O. Popescu   |
|                     | Arduino, and programming. Hands-on               |               |              |
|                     | activity with LEDs, single motors, and           |               |              |
|                     | multiple motors                                  |               |              |
| DAY 2               | Activities                                       | Duration      |              |
| 8:00 am – 9: 00 am  | <i>Making:</i> Intro to 3D Printing and Additive | 1 hr.         | K. Arcaute   |
|                     | Manufacturing Technologies.                      |               |              |
| 9:00 am – 10:00 am  | Computer Aided Design (CAD):                     | 1 hr.         | V. Jovanovic |
|                     | Introduction to CAD. Keychain Activity           |               |              |
| 10:00 am – 10:15 am | Break                                            | 15 min.       |              |
| 10:15 am – 11:05 am | Hands-On Making: Slicing - creating G            | 50 min.       | K. Arcaute   |
|                     | code from STL designs and preparing              |               |              |
|                     | them to be 3D printed.                           |               |              |
| 11:05 am – 12:00 pm | Design: Parametric Modeling                      | 55 min.       | V. Jovanovic |
|                     | Fundamentals                                     |               |              |
| DAY 3               |                                                  | Duration      |              |
| 8:00 am – 10:00 am  | Assembly: Assembly of bio-inspired               | 2 hrs.        | K. Kaipa     |
|                     | robots with pre-printed parts and servo          |               |              |
|                     | motors                                           |               | K. Arcaute   |
| 10:00 am – 10:15 am | Break                                            | 15 min.       |              |
| 10:15 am – 12:00 pm | <i>Electrical wiring:</i> Electrical wiring      | 1 hr. 45 min. | K. Kaipa     |
|                     | between servo motors, batteries, and             |               |              |
|                     | switch                                           |               | O. Popescu   |
| DAY 4               |                                                  | Duration      |              |
| 8:00 am – 9:45 am   | <i>Programming:</i> Programming code for:        | 1 hr. 45 min. | K. Kaipa     |
|                     | a) testing each leg and b) walking gait          |               |              |
|                     |                                                  |               |              |
| 9:45 am – 10:00 am  | Break                                            | 15 min.       |              |
| 10:00 am – 10:45 am | <i>Testing:</i> Testing of robot walking and     | 45 min.       | K. Kaipa     |
|                     | readjustment by analyzing possible               |               |              |
|                     | failures and making improvements.                |               | V. Jovanovic |
| 10:45 am – 11:15 am | Race to Finish                                   | 30 min        | K. Kaipa     |
| 11:15 am – 12:00 pm | Workshop Assessment Survey                       | 45 min.       | A. Dean      |





















![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Figure_1.jpeg)

| Frou<br>No. | ıde | Mammal<br>example | Height<br>(m) | Speed<br>(m/s) | Gait                                     |  |
|-------------|-----|-------------------|---------------|----------------|------------------------------------------|--|
| 0.1         |     | Cat               | 0.22          | 0.5            | Walking                                  |  |
|             |     | Camel             | 1.7           | 1.3            | Walking                                  |  |
| 1.0         |     | Cat               |               | 1.5            | Symmetric running (Most species trot)    |  |
|             |     | Camel             |               | 4              | Symmetric running (Pace)                 |  |
| 2 - 3       |     |                   |               |                | Asymmetric running<br>(Canter or gallop) |  |

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_29_Figure_1.jpeg)

| SIK Compone        | ents                   |                                     |                                    | đ       |
|--------------------|------------------------|-------------------------------------|------------------------------------|---------|
| Push Button        | Digital Input          | Switch - Closes<br>or opens circuit | Polarized, needs resistor          | 4 leads |
| Trim potentiometer | Analog Input           | Variable resistor                   | Also called a<br>Trimpot.          | 3 leads |
| Photoresistor      | Analog Input           | Light Dependent<br>Resistor (LDR)   | Resistance varies<br>with light.   | 3 leads |
| Relay              | Digital Output         | Switch driven by<br>a small signal  | Used to control<br>larger voltages | 3 leads |
| Temp Sensor        | Analog Input           | Temp Dependent<br>Resistor          |                                    | 2 leads |
| Flex Sensor        | Analog Input           | Variable resistor                   |                                    | 3 leads |
| Soft Trimpot       | Analog Input           | Variable resistor                   | Careful of shorts                  | 2 leads |
| RGB LED            | Dig & Analog<br>Output | 16,777,216<br>different colors      | Ooh So pretty.                     | 4 leads |
|                    |                        |                                     |                                    |         |

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)












































































































| /                                                                                                       |                                                |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| /                                                                                                       | / (function for driving the right motor        |  |
| void spinwotor(int motorspeed)                                                                          | //function for driving the right motor         |  |
| {<br>                                                                                                   | //if the meter should delive fermined          |  |
| If (motorspeed > 0)                                                                                     | //if the motor should drive forward            |  |
| (positive speed)                                                                                        |                                                |  |
| {                                                                                                       |                                                |  |
| digitalWrite(AIN1, HIGH);                                                                               | //set pin 1 to high                            |  |
| digitalWrite(AIN2, LOW);                                                                                | //set pin 2 to low                             |  |
| }                                                                                                       |                                                |  |
| else if (motorSpeed < 0)                                                                                | <pre>//if the motor should drive backwar</pre> |  |
| (negative speed)                                                                                        |                                                |  |
| {                                                                                                       |                                                |  |
| digitalWrite(AIN1, LOW);                                                                                | //set pin 1 to low                             |  |
| digitalWrite(AIN2, HIGH);                                                                               | //set pin 2 to high                            |  |
| }                                                                                                       |                                                |  |
| else                                                                                                    | <pre>//if the motor should stop</pre>          |  |
| {                                                                                                       |                                                |  |
| digitalWrite(AIN1, LOW);                                                                                | //set pin 1 to low                             |  |
| digitalWrite(AIN2, LOW);                                                                                | //set pin 2 to low                             |  |
| }                                                                                                       |                                                |  |
| analogWrite(PWMA, abs(motorSpeed));                                                                     | //now that the motor direction is set,         |  |
| drive it at the entered speed                                                                           |                                                |  |
| }                                                                                                       |                                                |  |
| <ul> <li>Acknowledgment: This work is supported by National Science Foundation grant 1749566</li> </ul> |                                                |  |



















| /*SparkFun Inventor<br>Circuit 3A-Servo<br>Move a servo attach<br>angle matches a pot<br>to A0.*/ | 's Kit<br>ed to pin 9 so that it's<br>entitometer attached |                                                                                                      |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| #include <servo.h><br/>servo library</servo.h>                                                    | //include the                                              | <u>@</u>                                                                                             |
| int potPosition;                                                                                  | //this variable will                                       | void loop() {                                                                                        |
| store the potentiometer                                                                           | position of the                                            | potPosition = analogRead(A0);                                                                        |
| int servoPosition;<br>move to this                                                                | //the servo will position                                  | <i>//use analog read to measure the position of the potentiometer (0-1023)</i>                       |
| Servo myservo;<br><i>object</i>                                                                   | //create a servo                                           | servoPosition = map(potPosition,<br>0,1023,20,160); //convert the<br>potentiometer number to a servo |
| void setup() {                                                                                    |                                                            | position from 20-160                                                                                 |
| myservo.attach(9);<br>object that its<br>plugged into pin 9                                       | // tell the servo<br>servo is                              | myservo.write(servoPosition);<br>//move the servo to the 10 degree<br>position<br>}                  |
| } Acknowledgment: This work is supported by National Science Foundation grant 1749566             |                                                            |                                                                                                      |
























| PLA - Properties                         | <u>(1)</u>                                        |
|------------------------------------------|---------------------------------------------------|
| Melt Temperature                         | 157 - 170 °C (315 - 338 °F)                       |
| Typical Injection Molding<br>Temperature | 178 - 240 °C (353 - 464 °F)                       |
| Heat Deflection Temperature (HDT)        | 49 - 52 °C (121 - 126 °F) at 0.46 MPa<br>(66 PSI) |
| Tensile Strength                         | 61 - 66 MPa (8840 - 9500 PSI)                     |
| Flexural Strength                        | 48 - 110 MPa (6,950 - 16,000 PSI)                 |
| Specific Gravity                         | 1.24                                              |
| Shrink Rate                              | 0.37 - 0.41% (0.0037 - 0.0041 in/in)              |
|                                          |                                                   |

















| STEREOLITHOGRAPHY                                                                                                                 | LASER MELTING                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Laser in the UV range,<br/>with power of 5 - 30 W</li> <li>Materials: Photoreactive<br/>Polymers (thermosets)</li> </ul> | <ul> <li>Laser with 50 - 1000 W of power</li> <li>Materials in powder form: <ul> <li>Metal alloys</li> <li>Ceramics</li> <li>Polymers</li> </ul> </li> </ul> |
|                                                                                                                                   |                                                                                                                                                              |
| ELECTRON BEAM MELTING                                                                                                             | BINDER JETTING                                                                                                                                               |
| <ul> <li>ELECTRON BEAM MELTING</li> <li>Electron Beam with 30 -<br/>45 kW of power</li> </ul>                                     | BINDER JETTING <ul> <li>Adhesive</li> </ul>                                                                                                                  |















































































|                 | Keythain First.                                                                    | File name:               | Keychain_F                | irstname_Last  | name.stl       | đ    |
|-----------------|------------------------------------------------------------------------------------|--------------------------|---------------------------|----------------|----------------|------|
| 50              | Export                                                                             | Save as typ              | pe: STL Files (*          | *.stl)         |                | 20   |
| New →           | Export the file in image file format such<br>as BMP, IPEG. PNG. or TIFF.           | Save file to             | TL File Save As Options   |                | _              |      |
| Save 🔸          | Export the file in PDF file format.                                                | the SD Card              | Dinary                    |                | ○ ASCII        |      |
| Save As         | CAD Format<br>Export the file in another CAD file format                           |                          | Units                     | -              | Structure      |      |
| Annage          | Such as Parasold, PRO-L or STEP.                                                   | You will<br>learn how to | Resolution<br>High<br>Low |                | Medium  Custom |      |
| Vault +         | Export the file into DWF file format.                                              | create a G               | Surface Deviation:        | 0.009000       |                | )    |
| Suite Vorkflows | Send DWF<br>Run the default email application with<br>the DWF file attached in it. | code<br>needed for       | Normal Deviation:         | 15             | 0%             | 100% |
|                 |                                                                                    | the printer              | Max Edge Length:          | 56.789083      |                |      |
| Print •         |                                                                                    | in the following         | Aspect Ratio:             | 21.500000      | 0%             | 100% |
|                 |                                                                                    | and shales               | Allow to Moure Totar      | nal Mark Nodar | Expect Colors  |      |



Keychain

















| Photopolyn                | ner Jetting - PJ)                                                                                                                                                                                                                           | ç |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3D PRINTER SPECIFICATIO   | DNS                                                                                                                                                                                                                                         |   |
| Model Materials           | Rigid Opaque (VeroWhitePlus™, VeroGray™, VeroBlue™, VeroBlackPlus™)<br>Transparent (RGD720 and VeroClear™)<br>Simulated Polypropylene (Rigur™ and Durus™)<br>High Temperature<br>Rubber-like (TangoGray™ and TangoBlack™)<br>Bio-compatible |   |
| Support Material          | SUP705 (WaterJet removable)<br>SUP706 (soluble)                                                                                                                                                                                             | 1 |
| Maximum Build Size (XYZ)  | 294 x 192 x 148.6 mm (11.57 x 7.55 x 5.85 in.)                                                                                                                                                                                              | 1 |
| System Size and Weight    | 82.5 × 62 × 59 cm (32.28 × 24.4 × 23.22 in.); 106 kg (234 lbs)                                                                                                                                                                              | 1 |
| Resolution                | X-axis: 600 dpi; Y-axis: 600 dpi; Z-axis: 1600 dpi                                                                                                                                                                                          | 1 |
| Accuracy                  | 0.1 mm (0.0039 in.) varies depending on part geometry, size, orientation,<br>material and post-processing method                                                                                                                            |   |
| Minimum Layer Thickness   | 28 microns (0.0011 in.) for Tango materials; 16 microns (0.0006 in.) for all other materials                                                                                                                                                | 1 |
| Build Modes               | Draft (36 micron); High Speed (28 micron); High Quality (16 micron)                                                                                                                                                                         | 1 |
| Software                  | Objet Studio™ intuitive 3D printing software                                                                                                                                                                                                | 1 |
| Workstation Compatibility | Windows XP/Windows 7/Windows 8                                                                                                                                                                                                              | 1 |
| Network Connectivity      | Ethernet TCP/IP 10/100 base T                                                                                                                                                                                                               | 1 |
| Operating Conditions      | Temperature 18-25°C (64-77°F); relative humidity 30-70%                                                                                                                                                                                     | 1 |


















NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/



























- On occasion, it would be best to modify the support structures to improve postprocessing
  - Save time
- Trial-and-error process
  IMPORTANT to inspect the layers prior to print





































- Create a sketch that is proportional to the desired shape
- Concentrate on the shapes and forms of the design
- Keep the sketches simple
- Leave out small geometry features
- Exaggerate the geometric features of the desired shape
- Draw the geometry so that it does not overlap
- Form a closed region so that it can be extruded later

Acknowledgment: This work is supported by National Science Foundation grant 1749566











NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/













































NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/




















NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/

















NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/





NSF Grant # 1749566 https://sites.wp.odu.edu/oduvetmaker/





















Module - Assembly of Lizard-like four legged robot





Module - Assembly of Lizard-like four legged robot

