Maine LearnToMod Project

Example Curriculum

LearnToMod.com é%%zThoughtSTEM.com

Table of Contents

How can | teach coding if | don’t know how to code?!? 4
The Curriculum 5
LearnToMod Day 1: Suggested Introductory Lesson. 7
Getting Settled 7
Introducing Mods 7
Why coding can be challenging 8
Tour LearnToMod 8
Wrapping Up 8
Functions: Chapter 1, Lesson 1 9
Goal 9
Definition 9
Code 9
Final Mod 12
Common Questions and Errors 12
Events: Chapter 1, Lesson 2 14
Prerequisite: Functions Lesson 14
Goal 14
Definition 14
Code 15
Final Mod 16
Common Questions and Errors 16
Variables: Chapter 1, Lesson 3 18
Prerequisite: Events Lesson 18
Goals 18
Definition 18
Code 18
Final Mod 21

LearnToMod.com 1 é%%ThoughtSTEM.com

Common Questions and Errors

Drones: Chapter 1, Lesson 4

Locations:

Prerequisite: Functions
Goal

Definition

Code

Final Mod

Common Questions and Errors

Chapter 1, Lesson 5
Prerequisite: Drones
Goal

Definition

Code

Final Mod

Common Questions and Errors

Loops: Chapter 2, Lesson 1

Prerequisites: Functions, Drones
Goal

Definition

Code

Final Mod

Common Questions and Errors

Logical Statements: Chapter 2, Lesson 2

Goal
Definition
Code
Final Mod

Common Questions and Errors

Inner Loops: Chapter 2, Lesson 3

LearnToMod.com

21

22
22
22
22
22
24
24

26
26
26
26
26
27
28

29
29
29
29
29
30
31

32
32
32
32
36
37

38

2 §A%?(Z,ThoughtSTEM.com

Prereq: Loops Lesson
Goal

Code

Final Mod

Common Questions and Errors

Functions with Parameters: Chapter 3, Lesson 1

Goal
Definition
Code
Final Mod

Common Questions and Errors

Events with Parameters: Chapter 3, Lesson 2
Goal
Definition
Code
Final Mod

Common Questions and Errors

Events with Player's Location: Chapter 3, Lesson 3

Goal
Definition
Code
Final Mod

Common Questions and Errors

LearnToMod.com

3

38
38
38
39
40

41
41
41
41
47
48

49
49
49
49
53
54

56
56
56
56
64
64

é%ﬁThoughtSTEM.com

How can I teach coding if | don’t know how to code?!?

Technology has many conveniences, however the breakneck pace of it’s development has created a
uniquely difficult problem for today’s teachers. Coding is unquestioningly an important skill for modern
students, and will only become more important in the future, but many teachers (including the author
of this curriculum) received little to no formal education in coding.

While programming may be daunting at first, we implore you to always remember the first and most
important rule of coding, concisely summarized here by Science Fiction author Douglas Adams:

“Don’t Panic.”

We, here at LearnToMod, have been hard at work creating resources, lessons and guides for teachers
and students alike. With these resources will have no trouble providing your students with quality
coding lessons lessons, regardless of your prior experience.

We must emphasize that this curriculum is by no means the only way to use LearnToMod in a
classroom. The most important educational tool in any classroom is the teacher, so we encourage you
to tweak, change, or throw away as much of the curriculum as you like to provide the best possible
experience for your students.

Let's get started!

LearnToMod.com 4 §A%?(Z,ThoughtSTEM.com

The Curriculum

After the introductory lesson, each lesson in the Example LearnToMod curriculum is divided into two
halves -- “Level Up” time and the “Mod of the Day.”

During Level Up time, students will utilize LearnToMod’s built-in instructional tools and badge-based

lessons to explore their own interests, at their own pace. In this period, the role of the instructor is to

act as a facilitator for the students, guiding them through difficulties while providing advice and

encouragement.

® Home

Play ~

Quests ~

Learn~ Social ~

Overview Badges
Getting Started 100%

Functions 100%

Conditionals 10%

Drones and Locations 100%

Loops with Counter Variables 0%

Learning To Program 23%

Loops and Functions 0% Variables 4%

Inventory and Entity Commands 100%

Functions with Parameters 13%

Introduction to Loops 16%

meeee

Introduction

Introduction Introduction

Introduction Introduction Introduction to Loops to Loops to Loops
to Loops to Loops to Loops (Scramble) (Mlssmg) (Missing)
f) ; Loops oop o0ps
oops Checkerhuard Checkerhoard Checkerhuard
Checkerhoard Checkerhuard Checkerhoard Pattern Pattern Pattern
Pattern Pattern Pattern (Scramble) (Missing) (Scramble)

Game Events 7%

Chec kerhoard

Chec kerhoard

Pattern

&

Loops

Pattern
(Missing)

A sample of LearnToMod’s available badges, found in “Skills and Drills.”.

If students are feeling confident in their coding abilities, they may choose to attempt a “Challenge

Card.” Challenge Cards contain ideas for mods and task students with discovering how to code them.

LEVEL 1

Erupting VYolcano

Create a giant 3-Dimensional
pyramid with a base of at least 12
by 12 blocks and have lava
running down the sides

LEVEL 1

Waterbender

EEVERT

Why Mot S Diagonal?

Create a flood in front of your
feet

Create a row of 5 blocks moving
diagonally

LearnToMod.com

A sample of beginner challenge cards.

§A%%ZThoughtSTEM.com

Students will track their badges and challenge cards on a LearnToMod “Journey Sheet.” After
completing a set number of badges and challenge cards, the student will test their knowledge by
designing and creating their own personalized mod. Upon the successful creation of this mod, the
student will “level up” and get a fresh Journey Sheet. Level up’s provides the teacher with an easy way
to track students’ progress, provide the students with a sense of progression and accomplishment, and
encourage students to challenge themselves with a variety of activities.

During the “Mod of The Day”, the instructor will lead the class in the creation of a new mod. Each mod
is outlined in this curriculum and gradually introduces students to essential concepts in computer
science, such as variables, loops, and logic. Students are encouraged to use any remaining class time to
play with the code and add their own creative elements to it.

As the curriculum progresses, the concepts covered in the Mod of the Day increase in complexity. Some
of the most complex mods may require multiple class sessions to complete. The instructor is
encouraged to spend as much, or as little, time as needed doing activities in each lesson. Instructors are
also encouraged to alter the order of the lessons to best suit their students’ interests. Keep in mind
however, that some activities require certain concepts to be covered prior to running the activity. The
prerequisites for each lesson will be listed under the lesson title.

Here is an example of how program held for eight 1-hour lessons might be run:

- Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8
30 min Level up Level up Level up Level up Level up Level up Level up
First Day time time time time time time time
Intro
30 min CH 1 CH1 CH 1 CH?2 CH2 CH2
Activity Activity Activity Activity Activity Activity
LearnToMod.com 6 §A%%(Z,ThoughtSTEM.com

LearnToMod Day 1: Suggested Introductory Lesson

While many of the lessons in this curriculum can be done in any order, we recommend spending your
first session doing this introductory lesson, or a variation of it. It is based on a 1-hour class.

Getting Settled

5 minutes:

e Help the students get seated
® [ntroduce instructors and mentors
o Take attendance

Introducing Mods

5 minutes:

Good afternoon everyone! My name is . How are you all doing today?
Get student responses.

| have a question for you all. Who here likes Minecraft? Does anybody here play Minecraft?
Get student responses.

So, those of you who have played Minecraft, I’'m sure you’ve done things dug a mine, used the materials
to build a nice house, and then had that house get blown up by creepers right? Has anybody here ever
played around with Minecraft mods before?

Get student responses.
What is a f?
Get student responses.

“Mod” is short for modification, or change. Basically, mods are used when people change the way the
game works to make cool stuff happen. Has anybody seen any cools mods?

Get student responses.

Those are some awesome mods! In this class, we are going to learn how to make our very own mods!
To make mods, we first need to understand how to talk to the computer and tell it what we want it to
do. This can be kind of tricky, so to make it easier, computer scientists have made special languages to
talk to computers. We call this “coding.”

LearnToMod.com 7 §’:\ﬁﬁﬁ;’zThoughtSTEM.com

Why coding can be challenging

20 minutes:

The hardest part about coding is understanding that what may seem obvious to us is not always obvious

to a computer. Let me show you:

Lead the class in an activity demonstrating the difficulties of explaining the task to something
that has no knowledge of the task. Explain to the students that you are a computer and the
students must program you to perform a specific task. Pick a task the students are familiar with
(making a sandwich, putting on shoes, etc.), and have the students give you step-by-step
instructions to complete the task. In each step of their instructions, you must deliberately
misinterpret everything they recommend. For example, if the students say, “Put the shoe on”,
place the shoe on a shelf or table. If they correct themselves and say, “Put the shoe on your
foot” place the shoe on top of your foot, rather than put your foot inside of the shoe.)

All right! So what went wrong?

Get student responses.

Computers don’t understand the world like we do, so we need to be very specific and very clear with

the instructions we give them. Code helps us to do that. We are going to be using a special coding

language that has been made specifically to make mods for Minecraft. Who wants to get started?

Tour LearnToMod

20 minutes:

If possible, show students the LearnToMod website on a projector and briefly walk through how
to sign in. We recommend passing out student name tents, and Take Home Sheets, so students
can easily keep track of their login information.

Once signed in, you can take a moment to give the students a tour of the LearnToMod website,
or you can play our video tour. The video tour can be found at https://youtu.be/3RIZ9T_ulMo.

Students should spend any remaining class time completing lessons in the “Skills and Drills”
badge collection, found on the LearnToMod site under menu item: Learn > Badges.

It is a good habit for students to test their mods after each step, to make sure they are on track.
While this may not be feasible for every lesson, students should definitely test their final mods.

Wrapping Up

10 minutes until class end

Give 5 minute warning!
Remind them to take their credentials sheets home.

LearnToMod.com 8 §A%?(Z,ThoughtSTEM.com

https://youtu.be/3RIZ9T_u1Mo

Functions: Chapter 1, Lesson 1

Goal

e Make a mod with multiple functions that
o Sends the player a message
o Gives the player a sword

e Work through the Functions badges

Definition

The function is the most basic building block of a program. Functions act like instruction books for us to
put all of our code inside of. When a mod first starts, the computer will look for a function called main
(in all lowercase). As the first step in any mod, if a main function is not present, the mod will not
proceed.

Code

In each mod, we always need ONE and ONLY ONE main function. As the starting location for our
program, without a main function containing instructions, the computer will be unable to navigate our
code and we will get errors when trying to run our mod. Mods are not limited to a single function; quite
the opposite! Multiple functions are a great way to organize code.

To create a new function, we need to define it. To the left side of the LearnToMod code editor (the area
of LearnToMod where users can create code), click Functions and click the purple block with a mouth,
function ‘do something’; this is called a function definition.

P Minecraft (@) function
Misc r
Logic
Loops
Math
Text
Lists
Variables

e 44

LearnToMod.com 9 §Ai%%ZThoughtSTEM.com

Drag this block into your workspace. To rename it, click on ‘do something’ and type main. When we
run our program, our computer will start at the top of the main function and do every command in

the order they appear.

Let's put a command in this function. Click and dropdown the Minecraft menu and click Players. Find
and click the red block, Send message ___to ___.

¥ Minecraft ﬂ

Entities

ltem
Drone '
World

Particles
Recipes Give effect = @ to Player ‘ for [f[1) seconds; amplifier:

Block

Events
P Music perform command ‘ for player '

Materials [A - C]

Drag this block into the “mouth” of the main function. Now click Text and click on the aqua “_" (an
empty text block) and the red me block from Players. You will find that these blocks fit right into the
Send message... block. Click on and type something into the “_" text block. (In the example, the

programmer typed HELLO WORLD . Your mod should now look something like this:

(@] function [T

E’:-‘.end EEEEL N 1 HELLO WORLD! B2 | to [me

Demonstrate this mod in action or, if students are logged onto their accounts, have them test their

code.

Now, let’s create a function to give the player weapons. We can call it whatever we want, but | suggest
you give it a meaningful name. For instance, if you have a function that gives your player weapons, you
can give it aname like give weapons instead of cool function.Inlarge programs, you may
have dozens of functions to keep track of, so proper (logical) naming helps a lot to organize them.

NOTE: When naming functions, the first letter of every function must be lowercase.

NOTE: In this example, the “naming convention” of functions uses lowercase words connected by the
underscore character, such as give weapons . However, in some mods, programmers use
slightly different conventions, such as giveWeapons where all words are connected and all
words after the first word are capitalized. As mentioned above, the first character of a function

must be lowercase.

LearnToMod.com 10 §A£#(ZThoughtSTEM.com

(@] function [RZE

ESend (EE=I N Y HELLO WORLD! B2 | to [T me

R0 give weapo ‘....‘_____'

Let's make this new function give the player a diamond sword. Under the Item tab, click on the
command Give ___ofitemtype ___ to player____. Fill in the blanks with a 0 number block from the
Math tab, a DIAMOND_SWORD block from Materials, section [D-G], and a me block from the Players
tab. Plug these blocks into the Give item... block and put the whole thing into our new function. Change
the number block froma0Otoal.

¥ Minecraft
Entities

Players
Item ’ Give ‘ of item type ‘ to player ‘ *___-

Drone
» NPC
World
Particles
Recipes
Block
Events
> Music
Materials [A - C]
Materials [D —k}]
Materials [H - M] 1'---______
Materials [N - R]
Materials [S - 7]
Misc
Logic
Loops

Math 4 E —

E‘:end message [&6 [FEIEeR[e;I]) ?? | to [me

[of item type (| DIAMOND SWORD | to player (| me

Now we have two functions! We aren’t quite done yet though. Our main function is the only function
that automatically runs when we activate our program. If we want to run other functions, we need to
tell the computer to do so. We can do this with a function call. Let's add one to our main function.

LearnToMod.com 11 éﬁ% ThoughtSTEM.com

Under Functions, you should see a block that shares a name with your function. Get this block and
place it inside of your main function.

> husi

Materials [A - C]
Materials [D - G] @
Materials [H - M]
Materials [N - R]
Materials [S - Z]

Misc

Logic

Loops

Math

Text

Lists

Variables

Final Mod

You should now have a mod that looks something like this:

Send message [€6 RSN} [elz{Mn]}2? | to [T me

give_weapon

Eaive [ED | ofitemtype [DIAMOND SWORD | to player [me

This mod will first send a message and then call our “give_weapon” function, which will give our
character a diamond sword.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

e Students may recognize that the Give ... item ... command could simply be placed in the main
function, eliminating the need for a function call altogether. This is 100% correct, and these
students should be praised for finding a more efficient solution. Reiterate to students that
function calls are very helpful if the same code must be run multiple times, or if the code must
only be run when specific criteria are met. Functions can also be a useful tool for organizing
large chunks of related code.

LearnToMod.com 12 §A£T%ZThoughtSTEM.com

e If code is not running properly, students should check that they have properly created a main
function and that they are calling the second function from it. Check that the number 0 is
changed to 1. Computers are very picky about syntax!!

e A good way to troubleshoot code is by testing with parts of the code that seems to work and
gradually adding other parts into the action. By right-clicking on a block in the editor, it may be
disabled (click Disable block), which will grey out the block and any of its contents. Remember
to Mod before trying your code again in Minecraft.

LearnToMod.com 13 %ﬁﬁ}% ThoughtSTEM.com

Events: Chapter 1, Lesson 2

Prerequisite: Functions Lesson

Goal

e Make a mod that strikes lightning and spawns an entity, every time the player breaks a block
e Work through the Events badges

Definition

An event is any occurrence of a specific set of circumstances (it can also be called a trigger). When an
event occurs, the game will run specific code in response. In Minecraft, there are probably a couple of
hundred different events happening at any time and we might not be aware of them. Some of these
events are basic or frequent: block_break; player_chat; entity_death. Others are specific, such

creeper_power; entity_combust_by_block; or player_bucket_fill. The LearnToMod software already
has some of these events hard coded (programmed) into the Event block dropdown menu:

block_break
+ block break

player_interact
player_maove
player_death
entity_damage by _entity
player_interact_entity
player_chat
lightning_strike

block _place

entity_death
player_egg_throw

projectile_hit

LearnToMod.com 14 §Ai%%(ZThoughtSTEM.com

Code

Let's start by using a block_break block and a do function __ when __ happens from Events. Plug the
block_break Event block into the second slot of the Do function... block. Now createa main
function and put the new event code inside of it.

block break

The do function ... block says that when a specified event is triggered, it can run a specific function.
Create a new function called something broke or asimilar name. Under Misc, grab a black
function ‘function name’ block. This black block should fit into the other space in our do function event
block. The black block is a function reference and it refers (directs) the code to run that function
whenever the defined event happens. Change the text in the black function block from ‘function name’
to the name of the new function; in the example itis something broke .

lE!EE something_broke :

Now we have an event! As long as our mod is active, any time the player breaks a block, our mod will

runour something broke function! Now just need to put some code inside of it. We want this
function to strike lightning and summon a zombie. To strike lightning, click on World strike lightning at
____from the World tab. Plug it into our new function. The blank space in this command must be filled
with a location. Get a me block from Players. The me block refers to the player, however the player has
lots of pieces of information -- values, characteristics, etc. -- associated with them. The computer
doesn't know what information we want to use. We need to specifically request the location of the
player. Under the Entities tab, get a location of block. Plug this into the space in the World strike
lightning ... block. Then, plug the me block into the slot left by the location of block.

(] function

@muat

LearnToMod.com 15 éﬁ%&z ThoughtSTEM.com

Now let’s summon (or spawn) a zombie. To do this, we will use the Perform command __ for player __
block, from the Players tab. Fill in the two spaces in this block with an “” Text block and a me block,
respectively. Minecraft has numerous commands that can be executed in-game. The Perform command
... block lets us use some of those. Some students may have used some of these commands, either
through Minecraft’s in-game Command Line, or the Minecraft Command Blocks. Tell these students that
any commands they know will also work inside of LearnToMod. In this case, we want to summon a
zombie, so type summon Zombie into the text block.

NOTE: Commands are case sensitive. Minecraft commands (in LearnToMod) use a specific naming
convention, including lowercase first word, spaces between each word, and an uppercase letter
to begin second and subsequent words.

Final Mod

Your code should look something like this:
(@] function [DED

Eﬂﬁndjmf function T M block break + IS0 | happens

BRI 0) something

World Bt i at [locationof [me

Wil = MBS summon Zombie BE | for player [T me |

In this code, the aqua do function ... block is telling the computer to run the function

something broke whenever a blockis broken. According to this code, when we run the mod, the
computer will write a note in its memory that says, “Whenever a block breaks, | will run the
something broke function” The something broke function will cause the program to
strike lightning and spawn a zombie.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

Some students may discover they can create an event in which a function runs itself! While this practice
may have uses in some cases, generally, it is highly discouraged.

LearnToMod.com 16 §A£T%ZThoughtSTEM.com

If improperly designed, a function that runs itself can lead to an error called a memory leak. In short,
when the event occurs, the function duplicates itself to create two identical functions. When the event
occurs again, these two copies duplicate themselves to create four identical functions. This duplication
continues exponentially, at every instance of the event, slowly using up all the available memory of the
computer. If the leak continues, all the working memory of the computer will eventually be used up,
resulting in the server crashing. If this does occur, simply restart the student’s server.

It is also very important that the “summon Zombie” command be formatted exactly as it is written
above. Code with errors in spelling, capitalization, or punctuation will not work properly. Explain to
students that computers don’t have the same reasoning that we do and cannot infer what we are telling
it. While a mistake in punctuation may be small to us, it’s big to a computer.

LearnToMod.com 17 éﬁ% ThoughtSTEM.com

Variables: Chapter 1, Lesson 3

Prerequisite: Events Lesson

Goals

e Create a counter to count the number of blocks the player has broken
e Work through the Variables badges

Definition

In programming, a variable is a value that can change depending on conditions or information passed to
the program. A variable can represent something as simple as a single number, or as complex as an
entire function. Each variable has two attributes: its name and its content. The programmer can choose
to use either or both of these, depending on what the mod needs.

We can have as many variables as we want. Variables come in all kinds of different types, to hold
different contents. For example, variables can represent numbers, “drones”, “booleans” (true or false),
“strings” (text), lists, or any other value you want to give it: Here are some variables that have been
defined in this LearnToMod code:

(@] function [T

set to

set to |
T hame - Rel. . Bill

set [EECER to (| (3) create listwith (| DIAMOND_HELMET

[DIAMOND_CHESTPLATE
(. DIAMOND_BOOTS

Code

When we are programming, using a variable requires that we first declare it. When we declare a
variable, we give it a name and tell the computer what it represents (the type of content). While
variables can be defined anywhere in your code, a variable cannot be used until the computer reads the
definition. As such, it is good practice to put variables at the very beginning of your code, so they are
the first thing the computer reads.

LearnToMod.com 18 §A£#(ZThoughtSTEM.com

You can create variables by selecting Variables in the menu. Choose the set ‘item’ to block. To change a
variable’s name, click the dropdown arrow next to ‘item’, click New variable..., and type in your
variable’s name. Remember to make the name meaningful. This makes it easier for you to keep track of
them and easier for other people to read your code.

(@] function [T
[set [N to §

4 item

Rename variable. ..

MNew variable. .

This only takes care of the first attribute, the name. Now, we have to tell the computer what the
variable is going to contain (content). Let's make a program that will count the number of blocks we
break. If we want to count something, we’ll need a blue number block, 0. Go ahead and get one from
the Math tab.

©) function (=T

ETcon TIHT

Next, we should create a block_break event and another function that will run when the event occurs.
You will find needed blocks in Functions, Events, and Misc.

(@) function G

set (IS to |

D1 %N block broken

Every time we break a block, we want the computer to add one to our count and send us a message
with the count. If you open up the Variables tab, you’ll see that we now have two different blocks that
represent our variable attributes.

LearnToMod.com 19 %%%Z ThoughtSTEM.com

P Minecraft set (5D to

Misc

Loops

Math set to
Text

Functions

These blocks both refer to our variable, but they do slightly different things. The first sets our variable to
a new value. The second will give us (gets) the value that is currently stored inside of the variable.

To add to our count, we’ll need to use both of these count blocks, as well as a 0 number block, and
a___+___ block. Both of these blocks can be found in the Math tab.

P BTt It o

> eoun]
> T |

Every time we break a block, we want to set our variable, count , tothe previous value + 1. To
accomplish this, arrange your blocks as follows:

R = 8 block_broken

Eettn |

Be sure to change the number block from 0 to 1. If we don’t change this value, we will add 0 to our
variable every time the function is run and the variable will never increase!

To see the value (content) of the variable, we’ll send the player a message. Get a Send message... block
from Players. Put a copy of our variable in the first slot, and a me block in the second slot (Variables
and Players).

LearnToMod.com 20 §A£#(ZThoughtSTEM.com

Final Mod

Our final mod contains an event, which when triggered by a player breaking a block, will add 1 to our
count and send us a message containing the value of our count. Your code should look something like
this:

(@] function [EETD

set to |

dorneneny function AN block break * I=TEl | happens

RN block broken
set to |

Send message [| to [me

If students are motivated, challenge them to add code that will subtract from their counter, if they place

a block.
Test your mod by clicking the “MOD” button at the top of the screen and running your mod in

Minecraft.

Common Questions and Errors

e Understanding the function reference block; why not just call function directly? When to use it?
e Syntax is critical to programming. If students are getting errors when they test their mods, have
them check each letter’s case and all punctuation.

LearnToMod.com 21 EL;%%Z ThoughtSTEM.com

Drones: Chapter 1, Lesson 4

Prerequisite: Functions

Goal
o Create a mod that will place a block for us
e Work through the Drones badges
Definition

A drone is like an invisible robot that helps you, in Minecraft. This drone accepts step-by-step
instructions, which tell it how to move. They are basically location-based, making them very useful
when building something, or when spawning mobs (creatures), in specific places.

You can program a drone to move in six directions (up, down, forward, backwards, left, or right) by any
amount of distance. The metric for distance in Minecraft is a block, therefore, if you give a drone a
command, such as...

d left @

...the drone will move 6 blocks to the left.

Code

Before using a drone in our mod, we have to declare it within a variable. To do this, we go to the
Variables menu and get the generic variable declaration block, set ‘item’ to. Select New variable...

Math

Text

Lists) .

Variables m
) + Item

Functions

Fename variable. ..

Mew variable...

A small window will open in our browser and it will ask us to type in a name. The default name for the
drone is simply d , but you can name it whatever you want. Keep in mind that if you name your drone
something other than d , you will need to change the default name in the blocks we use to command

LearnToMod.com 22 §Aﬁﬁ#szhoughtSTEM.com

the drone as well. Once we select a name, we must get a new Drone block from the Drone menu
(under Minecraft menu) and attach it inside our variable:

set ([ENND to

This basically tells the program that whenever we referto d , we are talking about our drone. Explain
to students that in this case, our variable is acting as a name tag. In some complex projects, you may
use several drones simultaneously, so each drone must have a unique name to differentiate them. Now,
we can start using our drone in our program.

As always, we should start our mod with a main function. Put your drone definition inside of it.
Remind students that although variables can be defined anywhere in your code, the computer has to be
aware of it before a variable can be used. Best practice is to set variables at the beginning of your code,
so they are the first thing the computer reads.

Now that our drone is defined, we need to give it some commands. Under the Drone tab, get the block
Move Drone ‘d’ in direction ‘up’ distance ‘1’. Students may notice there are two separate blocks that
both say the same thing. The difference between these blocks is the slot for the number block, rather
than a number space. These blocks would work identically in this lesson, however using the number
block is more versatile, as we will see in future lessons. The number block may be replaced with a
variable, allowing the drone command to be modified with code.

E

Now that we have a movement command, let’s tell the drone to place a block. Find a Drone ‘d’ places
block of type command, in the Drone tab. Fill the empty slot with a DIAMOND _BLOCK block from
the Materials tab, [D-G].

NoTe: This mod will not work if the empty space is filled with a DIAMOND block, rather than a
DIAMOND_BLOCK block. This is because DIAMOND simply refers to the raw material, whereas
DIAMOND_BLOCK refers to an actual object that may be placed in the world.

LearnToMod.com 23 éﬁ% ThoughtSTEM.com

Final Mod

Our mod will now create a drone, move it up, and command it to place a diamond block. Your code
should look something like this:

F
DIAMOND BLOCK

Students can repeat these commands to make the drone place multiple blocks and build simple
structures. If students have already learned to use loops, challenge them to use a loop to build a tower,
with this code.

Test your mods by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

e The most common mistake for students to make a new variable (for example, dronel), but
then forget to change the default variable, ‘d’, in other blocks of code. For example...

e T
DIAMOND BLOCK

This will produce an error. The variable dronel is defined, but never used in the function.
The second and third blocks call for a drone named ‘d’ that has not been defined in the function.
This error can be easily solved by either changing ‘d’ in the second and third blocks to dronel
, or by renaming dronel to d

LearnToMod.com 24 §Aﬁﬁ#fiThoughtSTEM.com

Move Drone [1=10k® in direction {3 distance I |

Dione 2 places block offype [, DIAMOND_BLOCK |3

e As noted above, some students may also tell their drone to place blocks of type DIAMOND,
rather than DIAMOND_BLOCK. This will not work, as DIAMOND simply refers to the material,
whereas DIAMOND_BLOCK refers to an actual object that may be placed in the world. Explain
that while this seems like a small difference to us, it’s a pretty big one to the computer!

LearnToMod.com 25 éﬁﬁ%z ThoughtSTEM.com

Locations: Chapter 1, Lesson 5

Prerequisite: Drones

Goal

e Strike lightning at the location of a four different drones
e Work through the Drones and Locations badges

Definition

So far we’ve been using a single drone to build structures. However, we can control multiple drones at
the same time. This will allow us to make things happen simultaneously, in multiple locations.

Code

In this lesson, we are going to create a mod that will strike lightning 5 blocks in front of, behind, to the
left, and to the right of the player. First, we need to create 4 drones. We can name them whatever we
like, but each name must be unique, so we can control them separately. In this example, I've named
them df, db, dL, and dr, for drone forward, drone back, drone left, and drone right.

BRI main |
set to

set to
set CTEED to

Now let's move the drones! Get four ‘Move Drone..." blocks. Change the distance moved for each block
to 5. Now, we need to select the direction for each drone. To specify which drone you are moving, click
the arrow next to ‘d’ and choose the appropriate drone. Change the direction by clicking the arrow next
to ‘up’. Make sure you are moving the right drones in the right directions! This can make it possible to
keep track of drones, within complicated mods.

NOTE: Blocks may be copied and pasted (Ctrl C and Ctrl V) or duplicated, by right-clicking on block and
selecting Duplicate.

LearnToMod.com 26 §Ai%%(ZThoughtSTEM.com

function

set

Move Drone 3B in direction distance
Move Drone D in direction distance
Move Drone in direction [Zi3E8 distance

Move Drone ED in direction distance [

Our drones should be set to move to the correct locations. All we need to do is strike lightning at the
location of the drones! Use four World strike lightning at ___ blocks from the World tab. To specify the
location to strike lightning (our drones’ locations), attach the location of block from Entities to each of
our drone variables.

Final Mod

Your code should look like something like this:

function

to [, new Drone

to (| mew Drone

to [, new Drone
set C@ED to 0} new Drone
Move Drone ED in direction distance
Move Drone KD in direction distance
Move Drone in direction [Z18 distance

Move Drone ED in direction [RTT# distance E)

We now have a mod that will strike lightning all around the player! We created 4 drones, moved them,
and told the mod to strike lightning at each of their locations. We can use location of blocks to specify
the location of many different things in Minecraft. The only limitation is that we must be very clear with

LearnToMod.com 27 %ﬁﬁ?ﬁz ThoughtSTEM.com

our references. For instance, we cannot say location of ‘EntityType’ ‘pig’, as Minecraft has hundreds of
pigs, and the mod will not understand which pig to use.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.
Common Questions and Errors

Since we are working with multiple drones, it is easy to mix up their names. If students are having
difficulty, double check the drone names in the commands to make sure each drone is used. Using
graph paper to chart out directions can also be helpful, when drone movement is confusing.

LearnToMod.com 28 §A%?(Z,ThoughtSTEM.com

Loops: Chapter 2, Lesson 1

Prerequisites: Functions, Drones

Goal

e Create a Mod that uses loops and a drone, to build a 30 cube tall tower
e Work through the Loops badges

Definition

Sometimes (especially when making buildings) we will want to create a mod that will do the same task
over and over again. Coding this by hand can be a pain and take a while. However, computers are very
good at repeating the same thing over and over. In many cases, we can give the majority of our
codework to the computer by using loops.

Code

In this mod, we are going to use a loop to command a drone to build a tower. Create a main function
and a new drone.

%) function (RET

To make a tower, we need the drone to place a block, move up a space, and repeat the pattern until a
tower has been created. Get a Drone ‘d’ places block of type , from the Drone tab, and fill the
space in it with DIAMOND_BLOCK from Materials. Now get a Move Drone ... distance ‘1’ block from
Drone.

@) function (D

DIAMOND_BLOCK

up 1

LearnToMod.com 29 %ﬁ% ThoughtSTEM.com

Here’s the problem; if we want to create a tall tower, we will need to repeat these two commands over
and over, telling the drone to repeatedly place a block and move up. This is boring and inefficient. We

can make our lives easier by using a loop.

You'll find multiple options for loops, inside of the Loops tab.

» Minecraft
Misc
Logic
Math
Text
Lists
Variables
Functions

There are lots of different variations of loops. All of them are useful, but to begin with, we'll just use the
repeat ‘10’ times loop. Use this loop inside of your function, right below the new drone.

(&) function [[RET0

Drone I B8 places block oftype || DIAMOND BLOCK

Move Drone EJE in direction [T distance [E)

Now, move the Drone ‘d’ places block of type and Move Drone ‘d’ in direction ‘up’ distance ‘1’
blocks into the do segment of the loop.

Final Mod

Your final mod should look something like this:

LearnToMod.com 30 §A£ﬁ%&ZThoughtSTEM.com

IR (=50 main |
set [FIED to |

r;peat { :l times

Drone I B8 places block of type | DIAMOND BLOCK

Move Drone [CIE in direction [TTJE distance E)

A loop is a simple and easy way of telling the computer to do the same thing over and over again. In this
case, we are telling our drone to place a block and move up. Then, the computer will move back to the
start of our loop, and repeat the code. Currently it will repeat this loop 10x, but we can change this by
adjusting the number block at the top of the loop, allowing us to easily adjust our mod.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

The most common mistake for students first using loops is usually simply placing the loop in the wrong
location of our code. For example, many students will try to place the set ‘d’ to new Drone command
inside of their loop.

(2] function =0

Drone I B8 places block eftype | DIAMOND BLOCK

Move Drone [CJE in direction [ITIE distance EJ

This will not function correctly. Drones always spawn at the location (block) at which the player is
looking, when the mod begins. When the code pictured above starts, it will begin the loop and create a
new drone. The drone will move up and place a block. The function will then loop back and replace this
drone with a new drone, sending it back to the starting location. Since the drone is being reset at the
start of every loop, it will never move above 1 block in height.

LearnToMod.com 31 éﬁﬁ%z ThoughtSTEM.com

Logical Statements: Chapter 2, Lesson 2

Goal

Make a mod that strikes lightning after the player has walked a set distance

Continue to work through the Loops badges

Definition
Up until this lesson, we have focused mostly on telling the computer what to do. With logical

statements, we teach the computer how to think. While there are many different types of logical
statements, one of the simplest, but most useful, is the If statement.

In the first part of an If statement, we give the computer a true/false statement to evaluate. Examples
might include determining if: the player is at full health; the player is holding a sword; there are three or
more enemies nearby. This part of the if statement is called an argument. IF this argument is true, the
computer will execute (perform) a specific piece of code. If the argument is false, the computer will skip
this code and continue on with the rest of the program.

In short, the basic structure is...

Simple as it seems, If statements are at the core of even the most complex programs.

LearnToMod.com 32 §A£T%ZThoughtSTEM.com

Code

We are going to create a mod that will count the steps the player has taken and strike lightning every 10
steps. To begin, let's command a lightning strike -- found in the World tab. We want the lightning to
strike at our location, so we need a location of block from the Entities tab and a me block from the
Players tab. Put these blocks together and plug them into the remaining blank space. Put the whole
command into your main function.

R =G0 main |

CWnrld strike lightning = EIRE M0 001 LS

Now our mod will strike lightning whenever we run it! To have lightning strike when our character
moves around, create and name a new function and move the World strike lightning command into it.
To add an event, or trigger, use a do function ____when ___ happens block (Events) in the main
function. Now fill the second slot with a ‘block_break’ Event block. Use the dropdown arrow to the
right of block_break to change the type of event. Switch the event type to player_move. Fill the first
slot with the black function ‘function’ call block, from the Misc tab. Make sure you change the function
block to reference your new function. Your mod should now look similar to this:

(@] function [IET
Eufunctlun [function ULV player move v Ja'E =T

(%] functloﬂ walk |

Our mod will strike lightning everytime we move (walk). We need to add in some logic. In the Variables
lesson, we created a mod that would count how many blocks we broke. This mod uses very similar
code. Create a new variable in the main function named count. In our walk function, use Math
blocks to add 1 to this variable.

LearnToMod.com 33 EL;%%Z ThoughtSTEM.com

(&) function [RETD

World B Lutkd at [location of 1 me

We need an if statement. You'll find if statements under Logic. Place this block inside of the walk
function.

(&) function [RETDY

HENURSHBAN = function =) player move v [S | happens

DRI walk |

World Bl niitha at [locationof [me

IF the player has walked ‘10’ steps, we want the mod to strike lightning. Go ahead and move the World
strike lightning command into the do segment of the if statement. Your code should look like this:

LearnToMod.com 34 §A£ﬁ%&ZThoughtSTEM.com

(&) function [RETY

UENBRSHSRN = function =) player move v [S | happens

(@] function (TETY

(@) if

do E‘Uurld at (locationof [me

You will see that there is a blank space directly to the right of the word if. This blank space is where we
will place our argument (the condition part of the logic statement.) To make an argument, we need the
Logic block: = . Plug this into the blank space.

(&] function [RETY

do Eu'urld at [location of 1 me

The if statement will now check to see if two values are equal. We need to specify the values we want it
to compare. We want the function to strike lightning every 10 steps, so we will compare the variable

count to the number 10. Fill the two blanks with the count variable and a number block from Math.
Set the number block to 10.

LearnToMod.com 35 é%%z ThoughtSTEM.com

(&) function [RETDY

HENURSHBAN = function =) player move v [S | happens

(@] function ETELS

me

Last, but not least, we need to reset our count variable after the lightning strike. Add a set count to
block right after the lightning strike line and connect a 0 number block to it.

Final Mod

Your code should look similar to this:

(@] function [UETY

HENURSHBAN = function =) player move v [S | happens

(@] function ETEL9

me

With this mod, the computer will run some code every time the player takes a step. First, it will increase
the step counter by 1, and then it will check if the counter is equal to 10. If count = 10, the mod will
strike lightning and reset the counter. If the counter does not equal 10, it won’t do anything, until the
next time the player moves.

LearnToMod.com 36 §A£???ZThoughtSTEM.com

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

This mod is fairly simple, but has lots of small pieces that can easily get mixed up. If students are having
difficulty getting their mod to work, check to make sure their number blocks are set to the correct
values. Also, make sure the counter is defined at the beginning of the mod and reset during each do
function.

LearnToMod.com 37 %ﬁﬁ}% ThoughtSTEM.com

Inner Loops: Chapter 2, Lesson 3

Prereq: Loops Lesson

Goal

® Create a Mod that uses loops and drones to build a wall
e Continue to work through Loops badges

Code

Back in our first loops lesson, we made a mod that would command a drone to build a tower. Our final
mod looked something like this:

(@) function [T

DIAMOND_BLOCK

up 1

Now, what if we wanted to make a wall? A wall is pretty straightforward to make; it is basically just a
bunch of towers placed side by side. All we need to do is tell the drone to move back down to the
ground, move a bit to the left, and then build a new tower!

LearnToMod.com 38 §A£#(ZThoughtSTEM.com

function

to (. new Drone

Move Drone EED in direction [TIER distance [E)

Drone I Il places blockoftype | DIAMOND BLOCK

Move Drone D in direction [GET1ES distance
Move Drone D in direction [E{ED distance)

repeat [~ times

Move Drone D in direction [TIE distance [E)

Drone I'IB8 places blockeftype (| DIAMOND BLOCK

Uh oh, this might be a problem. Our wall is only two blocks wide and our code is already getting pretty
big. Conveniently, there is an easy solution! We can use nested loops -- loops inside of other loops! Let's
get rid of the code for the second tower and put the second loop around the code for the first tower.
The set ‘d’ to block should not be put into the loops!

function

Move Drone B in direction TR distance [£)

Drone I:IE8 places block oftype [DIAMOND_BLOCK

Move Drone D in direction [GENLED distance)
Move Drone [EJEB in direction (=738 distance)

Since this mod is self contained, it is generally good practice to put it in a function of its own and call
the new function from the main function.

Final Mod

Just like that, we have a new mod! Your code should look like this:

LearnToMod.com 39 %ﬁﬁ?ﬁz ThoughtSTEM.com

BRI LN main |

(wan

(@] function

up 1
DIAMOND_ BLOCK
down 10
left 1

When the mod is run, it will create a drone and begin an inner loop. The drone moves up and places a
block and repeats this 10 times, to create a tower. When the first tower is done, the drone moves down
10 blocks and moves left 1 block, before looping back to the top and starting over. The nested loop
directs the drone to build a 10 x 10 block wall!

Separating code into multiple functions can make organization much easier in large and complex mods.
It also minimizes the need for writing the same code over and over. If students want to build walls at
multiple places in their mod, it is much easier to simply call the function again.

If students want an extra challenge, encourage them to use a third loop to turn their wall into a giant
cube.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

Common Questions and Errors

Sometimes students will confuse the inner loops and add code into it that should stay out. The
logic may not be intuitive, at first.

LearnToMod.com 40 §A£#(ZThoughtSTEM.com

Functions with Parameters: Chapter 3, Lesson 1

Goal

e Create a generic function that takes input and performs a specific task using that information
e Work through the Functions with Parameters badges

Definition

A function can be given (passed) extra values when it gets called; these values are called parameters
and they are stored in variables. Parameters are a very efficient way of creating functions that are
flexible and can be used in multiple, similar operations.

Code

In our second loops lesson, we created a wall by repeatedly looping our tower function. This is great,
unless we wanted to change our tower in any way. For example, what if we wanted our wall to be made
of an alternating pattern of diamond block towers and slightly higher gold block towers?

=2
PP
-PCPC
[==
=S ==
= H =

- -
| = =
e
B>

We could accomplish this by creating a second tower function and repeating them one after the other.
However, this is inefficient. For example:

LearnToMod.com 41 éﬁ% ThoughtSTEM.com

function

to [new Drone

Move Drone D in direction [TER distance
Drone :IE8 places block oftype [DIAMOND BLOCK

Move Drone KB in direction CEIEES distance E)

Move Drone D in direction [distance E)

repeat [times

Move Drone D in direction [T3E distance

Drone 88 places blockoftype [GOLD BLOCK

Move Drone D in direction TLES distance
Move Drone [CJEB in direction (=78 distance)

With a few simple changes however, we can make our wall with half the code.

We will create a new tower function that very similar to the mod we created in the first loop lesson --
with some small changes. Instead of embedding the specific number of blocks and block materials into
the individual commands, we are going to use parameters to input the desired number and material for
each tower, as the code progresses. (Think about switching out a peripheral with “plug and play.”) This
way, we can change the pattern for height and block type of the towers, without rewriting each step
over and over.

Create a main function and a drone variable. Create another function (example uses tower) for the
towers’ code.

LearnToMod.com 42 %ﬁThoughtSTEM.com

function

function

repeat [times
Move Drone [EIED in direction [ITE distance [
Drone [EIED places block of type ‘

Move Drone [CIED in direction RIS distance [
Move Drone [EIED in direction [k distance [

For drone movement, use the Move blocks with the blue number variable block in them.

¥ Minecraft
Entities
Players
Item
| Drone
¥ NPC
Customize
World
Particles
Recipes
Block -
Events Drone G places block of type &=

= Mucic

new Drone

Move Drone [CJED in direction [T 388 distance ¥,
-

Move Drone [CJE in direction [TTE# distance -":

We use these Move... blocks because we can replace the number blocks with variables. These variables
are going to be a little bit different from our previous variables, however. These are going to be
parameter variables. To make a parameter, click the blue gear icon on the function’s top left corner.

LearnToMod.com 43 %ﬁ% ThoughtSTEM.com

(@] function

The gear icon opens an input window to create parameters. Drag two input name: x blocks into the
inputs section, and name them height and material. Click the gear again to close the window.

input name €3 S inous
inﬁut (=11 t=8 height |
iﬁﬁut name:

(@] function with: height, material

I;‘-Iove[)mnemintiecﬁonmmfl:l
Drone [GIED places block of type ‘

Move Drone [EIED in direction [[E1E# distance |
Move Drone [EIED in direction ([[E13EB distance [

It may not look like much has changed, but it has! Check out the Variables. You’ll notice that there are
now variables formaterial and height. Also, at the top of the function, with: height, material
appears. Plug the material variable into the drone ‘d’ places block of type __ command, and place
a height variable into the repeat ___ times slot of our loop and in the Move Drone ‘d’...distance ____
slot. Your code should now look like this:

LearnToMod.com 44 Eiﬁﬂ%&zThoughtSTEM.com

(@] function with: height, material

repeat [[(E0018 | times

M[hulemintiﬁ:limm:istantaf::l

Drone (I places block of type [

Move Drone [CIEB in direction [T distance [(17 1
Move Drone [CJED in direction [[Zi35# distance

When we run this function, the computer will check to find the values for height and material and
use those values inside of our code. We just need to tell the computer what these variables contain.
Click Function to call your second function from the main function.

> Minecraft gESRY
Misc

Logic
Loops
Math (@) to
Text
Lists
Variables d

if ' return ‘
| main_

tower with:
height

matenal

As you can see, our function call now contains two extra slots; one for each of our parameters! Click on
the function call, and place it in your main function. Let's plug some blocks into these slots. Since
height is a number, we’ll want to put a number block (Math) into this slot and set it to 10.
Material will represent what we want our tower to be made of, so put DIAMOND_BLOCK block into
this slot. Your main function should look like this:

LearnToMod.com 45 éﬁﬁ%z ThoughtSTEM.com

RSN main |
set EIE) to |

tower with:

height |
material (| DIAMOND BLOCK

When we call our main function, we specify that we want to build a tower with a height of 10, made of
diamond blocks. We can change these parameters, every time we call the function, if we want. Add

another tower function call (or the name of your function), but this time, set height to 13 and set
material to GOLD_BLOCK.

R G0 main |
set GEIED to |
tower with:
height |
material ([DIAMOND_ BLOCK
tower with:
height |
material (| GOLD BLOCK

(2] function with: height, material

ﬁuve[huneﬁ.intiecﬂimmm f:l
Drone [EIEB places block of type :

Move Drone [(IED in direction ((EITEM distance [(77 1
Move Drone [EJEB in direction [Zi85# distance [

LearnToMod.com 46 Eiﬁﬂ%&zThoughtSTEM.com

Now, our drone will build a diamond block tower that is 10 blocks high and then build a tower that is 13
blocks high and made of gold. If we set a loop around our function calls, we’ll build a wall of alternating
height and material.

Final Mod
(@] function §EY

height |
material [DIAMOND_BLOCK
tower with:
height (
material [, GOLD_BLOCK

(1] function with: height, material

repeat (| [(ERIES | times

mmﬁ.mmﬂﬂmﬂj
Drone (CIE places block of type [(==ZIKD

Move Drone [ZIED in direction (LK distance [(=7 17
Move Drone [ZJEB in direction [ZE distance [

This mod begins by creating a drone that builds a tower, with 10 specified for the height parameter
and DIAMOND_BLOCK specified for the material parameter. Next, the drone creates another
tower with 13 specified as the height, and GOLD_BLOCK specified as the material. We repeat
this 10 times to create a wall of alternating materials and heights!

Under the appropriate circumstances, parameters are incredibly useful. It is possible to create mods
that achieve similar results, with a creative use of variables and loops, but parameters help to
streamline the process. Additionally, more advanced ways of using parameters allow us to access details
(attributes, characteristics) of our Minecraft world not contained in any of the LearnToMod blocks.

Test your mod by clicking the “MOD” button at the top of the screen and running your mod in
Minecraft.

LearnToMod.com 47 éﬁﬁ%z ThoughtSTEM.com

Common Questions and Errors

While programing with variables, it is very important that the correct variables are placed in the correct
places. Some students may mix up theirmaterial and height variables. Others may try to replace
all number blocks with height variables, which prevents the tower function from getting the
necessary height information from main. If students are having difficulty keeping their variables
straight, encourage them to get some graph paper and draw step by step what their drone is doing at
every step of the mod.

Parameters may confuse some students, because they require using variables to abstractly represent
different values at different times. Practicing with the Parameters badges, in LearnToMod ‘Skills and
Drills’, will help with this.

LearnToMod.com 48 §A%%(Z,ThoughtSTEM.com

Events with Parameters: Chapter 3, Lesson 2

Goal

e Create a function that will retrieve information from the player chat
e Work through the Game Events badges

Definition

When some events occur, we want to retrieve and use specific information related to an event. For
example, in this mod, we are going to retrieve the message a player sent during a player_chat event. To
retrieve this information, we will need parameters. Parameters are a type of variable that can be
passed to a function when it runs (or is triggered by an event).

Code

We are going to create a mod that will dress the player in a full suit of armor, when the player types ‘on’
in the chat, allowing them to quickly prepare for battle!

NOTE: To trigger a player_chat event, the player simply type T to comment in the chat.

First, we need to prepare some variables. Create four variables: helm; chest; legs; andboots.
(It is suggested that students use the variable and function names used in the example, to help to keep
the code clear.) We need to set these variables to represent different pieces of armor. To do this, get
four new Item of material ___amount ___ block from the Players tab and connect one to each of our

variables. Set a number block from the Math tab to 1 and place it in the second slot of each block.
Now, get one each of the DIAMOND_HELMET, DIAMOND_CHESTPLATE, DIAMOND_LEGGINGS, and
DIAMOND_BOOTS blocks out from Materials [D-G]. Place these blocks into the remaining slots of their
respective variables.

(@] function [ETY
set (MM to [new item of material [DIAMOND HELMET | amount [[E}
set EIEEEB to (| new item of material ‘. DIAMOND CHESTPLATE | amount Jl

set [E5E8 to [new Item of material (| DIAMOND_[EGGINGS | amount Jl 1
set (CEEENM to (| new Item of material [Jl DIAMOND_BOOTS | amount Jl

NOTE: Some students may try to simply connect the armor blocks (DIAMOND_HELMET,
DIAMOND_CHESTPLATE, etc.) directly to the variable. While this seems logical, it will not work.

LearnToMod.com 49 éﬁ% ThoughtSTEM.com

The armor blocks represent a type of item, rather than a specific instance of it. Just as | know

what a shirt is, but | can’t give you one unless | have one, the computer knows what a
DIAMOND_HELMET is, but it does not have one for us to wear, unless we tell it to make one. By

using the new Item of material... command, we can tell the computer to
an item for us.

build (an instance of)

Next, we need to create an event. We want our mod to be controlled by commands the player puts into
the chat. To do this we need a ‘player_chat’ event. Click Events and the do function ___ when __
happens. Get the ‘block_break’ Event block and place it into the second blank space. Change the type
of event to player_chat by clicking the dropdown arrow to the right of block_break.

(&) function ERETY
set (0D fo [new Item of material ' DIAMOND_HELMET | amount [* g)
set =MD to (| new Item of material [T DIAMOND _CHESTPLATE | amount ’I

set (=B to () new Item of material (| DIAMOND_LEGGINGS | amount (| €

set (TEMD to (| new Item of material (| DIAMOND_BOOTS | amount [£)
l-‘_ player_chat - Iﬂl

block_break
player_interact

player_maove
player_death
entity_damage_hy_entity
player_interact_entity

v player_chat
lightning_strike
block_place
entity_death
player_egg_throw

projectile_hit

We’'ll need a function to run as well. Create a second function and name it armor. Under Misc, use a

black function ‘main’ block and place it into the first space in the do function ___... block. Now, use the

dropdown arrow to switch the function from main to our new armor function.

LearnToMod.com 50

§A%%ZThoughtSTEM.com

BRI main |

set (IEMNMD to (| new Item of material [Jl DIAMOND_HELMET | amount Jl |
set [EEEED to (| new Item of material [‘l DIAMOND_CHESTPLATE | amount JI

set (X5 to [new Item of material (‘l DIAMOND_LEGGINGS | amount [
set (EEEHM to [new Item of material [DIAMOND_BOOTS | amount [

0 funcion (! ncton | when [/ [SRE Event | happens

main

4 armar

(&] function EINHS

We are going to do something a little bit different with this function. We want this function to retrieve
some information from the event that started it. In this case, we want the function to get the message
the player typed into their chat. We will need to add an input to our function. Click the gear icon on the
armor function to pull up the input window. Drag an input name: ‘x’ block into the inputs block. Now,
type info in where the x is. When you click on the gear icon to close the input window, you will see
that the second function says: function *armor’ with: *info’ .

(&] function [[BETY

set ([IEMEM to (| new Item of material [’l DIAMOND_HELMET | amount Jl
set (WM to (| new Item of material [‘l DIAMOND_CHESTPLATE | amount JI
-..' lens « o [- r =
Jl DIAMOND_LEGGINGS | amount [’
input name:
[Jl DIAMOND BOOTS | amount JI
input name: (infol)
1 (Event | happens

(@] function [EIB with: info

Info contains a lot of, well, info. We need to isolate which piece we want (in this case, the players
message), in a variable. Create a new variable and name it player message. Now, under Misc, click

LearnToMod.com 51 %ﬁ% ThoughtSTEM.com

the ‘item’ ‘s ‘default’ block. Connect this to the player message variable. Replace ‘item’ with
info and replace ‘default’ with ‘message’.

NOTE: Message is one of many pieces of information that is stored inside info.

(@] function [TE)

set (MMM to [new item of material [Jl DIAMOND_HELMET | amount J||
set EEEED to [, new Item of material [‘l DIAMOND GHESTPLATE | amount JI

set [EEEB to [, new Item of material [Jl DIAMOND_LEGGINGS | amount (' g3

set CLEENM to [new item of material [Jl DIAMOND_BOOTS | amount JI
dovanetonN | function when [[N =M= 8@ Event | happens

(@] function ELS with: info

The info’s message block will search through all of the available information inside of the parameter,
and retrieve a variable called ‘message.’ Think of info as a chart or array of variables, where, in each
line of the table, one column identifies the variables by name (‘message’) and the other column
contains the content/value of that variable. The variable ‘message’ contains the text the player typed
into player_chat. We are saving this text in our own player message variable, so we can easily use
it.

What the parameter variable code -- set player message to ‘info’’s ‘message’ -- is saying:

Create a function with the info parameter;

Define a new variable called player message;

Setupour player message variable to receive the message (text) typed by the player --
stored in the info array (table) under the variable name message.

We want our function to check the message the player sent. If the player sent the message “on” we
want the mod to give us a full set of armor.

Open up the Logic tab, and grab an If do block. Place this underneath our new variable.

LearnToMod.com 52 §Aﬁ%ZThoughtSTEM.com

You will see that there is a blank space directly to the right of the word if. This blank space is where we
will place our argument. To make an argument, we need another logic block. Open Logic and get a
____=___ block. Plug this into the blank space.

(@] function B8 with: info
E=q player_message - ROl info - R message’

Now the if statement will check to see if one thing is equal to another. We want the mod to dress the
player in armor when they type “on” into the chat, so let’s check to see if the player message =
“on”. Gettheplayer message variable from the Variables tab and place it into the first blank slot.
Then put a blank text block from the Text tab and place it in the second slot. Now, type on into the
text block.

(@] function EILES with: info

O L o

Our function will now check the player message. If the player has typed “on” into the chat, the function
will perform the code in the do section of the if block. Let's put some code in there!

Under the “Players” tab, look for the block Change armour piece helmet to item ___ for player___.
Place four of these blocks into the do section of our if function. These blocks will change the player
armor to the variables’ values we specified in our main function. The grey dropdown space in each
Change armour piece ... block should correspond to a different armour piece. Put the matching
variable into the first blank slot (grey ‘helmet’ to he 1m, and so on). Finally, fill the second blank slot of
each block with a me block from the Players tab.

Final Mod

Your finished mod should look like this:

LearnToMod.com 53 éﬁ% ThoughtSTEM.com

(@] function [RETDY
set (D © (| new item of material f'@ amount f@
Sét to [\ new Item of material [@ amount F
sct (7B to || new ltem of material | DIAMOND_LEGGINGS | amount (@ |
set CEZERB to (| new tem of material (| DIAMOND_BOOTS | amount (' @
player chat

(@] function E0® with: info

ORRNM plaver message - (= - [on
Change armour piece toitem 0 GELDEE for player ' me

Change armour piece to item [for player . me

Change armour piece to item [[EvcI@ | for player [me

Change armour piece to item | for player i me

Whew, that was a long one! Our final mod is pretty cool, though! Have your students enter Minecraft
and run the mod. To test it, press T to open the chat window, and then type in on (case sensitive!!)
You should find yourself fully donned in diamond armor! You can check by pressing F5 to look at your
character. If you are playing in Survival mode, you can also check by opening your inventory, or looking
for the armor icon above your health.

This is just one example of the many parameters that can be retrieved from events. For a full list of
available parameters, check our our “Functions with Info” guide.

Be sure to test your mod by clicking the “MOD” button at the top of the screen and running your mod
in Minecraft.
Common Questions and Errors

As noted above, connecting armor blocks directly to the variable will not work. It is the difference of the
computer being able to identify what the armor block is rather than producing one for the player to
wear, in response to code.

Some students may have difficulty getting their mod to work. In these cases, check the spelling,
capitalization and punctuation of “on” in their code and when they type it in the chat. Remind them

LearnToMod.com 54 §A£#(ZThoughtSTEM.com

that while “On”, “on”, “ON”, and “on.”, all mean the same thing to us, they are very different for
computers. The computer will only do our function if our command is written exactly as we have
defined it in our code.

LearnToMod.com 55 %ﬁﬁ}% ThoughtSTEM.com

Events with Player's Location: Chapter 3, Lesson 3

Goal

° Create a Mod that checks the player's location and strikes lightning when they are standing on a
specific block
. Work through Game Events badges

Definition

We have worked a lot with location, but what if we want to make a mod that will execute only when the
player is at a specific point in their world? This is actually pretty easy to do!

In Minecraft, the location of any object is defined with XYZ coordinates, just like a graph! This means
that any location in the game can be defined with just three simple numbers! To find coordinates in
game, press F3. This will bring up all kinds of information about the game, including the location of your
player.

r1|r|-=--:,r*af'r 1) f'l q;’uldrnlla"-

CFU; 3= AMD Athlonctm> II A3 4568 Frocessor

ga
t 15 C15 sky, 8 bl
ocal Difficulty; 8,75 /

Oebug: Fie [shiftl hidden FF:
For help, press F2 + 0

Above: XYZ coordinates are marked with red line around them.

NOTE: Some students may not find using the coordinates easy, at first. Remind them that x and y are
the directions that they can use on a flat piece of graph paper, while z would require depth, or a
3D model.

Code

As always, we will start witha main function. We will need a do function ___ when __ happens
inside main. Fill the second slot with 'block_break’ Event and change the event type to

LearnToMod.com 56 §Aﬁﬁ#szhoughtSTEM.com

player_move. Now create a second function (for example, check location)and fill the first slot
with the function ‘function’ block from the Misc tab.

(@] function [TE)

Eﬂﬁndjnn [function when [Event | happens

(@) function

Make sure your function block is set to the function you just created!

Now, we are going to add some parameters to our function. Click the gear, and add a new input. Name
thisinput info.

1 | when | FETERGY Event | happens

(@] function with: info

Info is a unique parameter. Instead of setting our parameters when we call a function, info will
automatically take information from the event that called the function. In this case, we want to pull the
location of the player from info. We will need a couple of steps to get to this information. First, get
the ‘item’ ‘s ‘default’ block from Misc.

P Minecraft

eval
Tam T
Logic

item -

Loops
Math
Text

Lists
Vanables
Functions

function

LearnToMod.com 57 EL;%%Z ThoughtSTEM.com

Infois not a single variable; it acts as a container for a bunch of different variables. We want to access
the variable that refers to the player. To do this, change item to info and change default to player.
Now, create a new variable called me and setitto ‘info’ ‘s ‘player’.

(@] function [ET)

Enﬁndjm | function when [Event | happens

(@] function with: info
ETre T o - P iayer)

The variable me will now refer to the player who activated the player_move event.

me, like info, has a lot of variables stored inside of it. We have narrowed things down significantly; all of
the variables contained within me refer to the player. We are interested in our location, so create
another variable and call it coordinates. Now, using another ‘item’ ‘s ‘default’ block, change its values

to ‘me’ and ‘location’ . This code will retrieve a variable called location from the pile of variables
associated with our character (me), and save it as a variable we can easily access.

BRI =8 main

En JUREHORN function when : Event | happens

(%] function with: info

22y me - QORI info - JEY player
2] coordinates - Lol

Almost there! As | said at the beginning, location is made up of three numbers, anx,ayandaz

coordinate. We are going to create three new variables and set each to one of these numbers. Create
three new variables called x _coordinate, y coordinate, and z coordinate. Seteach
of these variables to coordinates ‘s x, coordinates ‘syand coordinates ‘s z, respectively.

LearnToMod.com 58 §Aﬁ%ZThoughtSTEM.com

BRI main |

Enflndjmf function | U1 player move + RV EEIET G

(&) function with: info

=4 me * JoMM info * K player]

=¥ coordinates - Rel

B~ coordinate * LM coordinates * R x|
A~ Coordinate - LM coordinates * By |

coordinates -

And just like that, we have three variables that will tell us the player’s x, y and z coordinates. We can use
these to determine where the player is!

NOTE: We can also determine the player's location without using parameters with the following code:

(2] function [RETY

Enftndjmf function N player move + RSV SEIE 0=

(¢] function

location of |
set CETED to | CECAED s 3
set (IEEED to | FECARED =)
T xioc - LM player loc - Bl z

Truthfully, this method of obtaining location is likely more efficient for identifying the player.
However, using we feel that using parameters is an important enough skill that it deserves
reiteration here.

Now, we need to define where we want the player to be, for our mod to activate. There are a few ways
to do this, but the easiest is probably to simply walk there and check!

LearnToMod.com 59 %ﬁ% ThoughtSTEM.com

Allocated,

F' 13, T' ALl 14 CFU 3= AMD AthlonCtm> II /3 458 Fr
Mul tigl :v-wrl ‘hunkCache: 441, 441

Debug: Fie L
For help pre

In my case, I'm going to use 210, 29, 112 as my X, y, and z coordinates. You will likely need different
coordinates for your mod, however, to make sure your mod activates near your current location. To
make the mod perform certain actions when the player reaches a location, we need to use some logic
blocks.

Get an if do block from the Logic tab. We want to check the player's location, in relation to the location
where we want our event to occur. Use a = block, and then plug in your x_coordinate
variable, and a number block containing the desired corresponding coordinate.

LearnToMod.com 60 §A£T%ZThoughtSTEM.com

(@] function [ETY

ED JUREHeRN | function when [Event | happens

(@] function
o4 me * JOMMN info * B player |
¥ coordinates - hell
A= Coordinate * RLJM coordinates + B x
A Coordinate - LM coordinates * Xy |
A= coorianate * RLM coordinates + B)

CRRNcoordinate -]| = - [{Z10°

As you can see, we have a bit of a problem. We only have space for one argument in our if block, but we
need three arguments to define our coordinates. We can solve this problem by usingan ____and_____
block. This block is also inside of the Logic tab. You can plug multiple arguments into an and block. With
the and block, the if block will check to make sure that both of our criteria are true. If either are false,
the if block will not execute the code in the do section. Detach and save the x _coordinate=____
Create another ____=____ block and fill this one with your y coordinate values. Put the
x_coordinateandy coordinate argument blocksintothe ___and___ block, and attach it to

the if block.

LearnToMod.com 61 é%% ThoughtSTEM.com

BRI 0] main |

Eofmdjon | function when [[REGEHL L8 Event | happens

&) function

2 me + JeMW info + B player |

=T coordinates - 1ol me - B location
e coordinate * RN coordinates + By x
e oordinate * RH coordinates * BNy
e coondnate * RNH coordinates * Yz

D _coordinate - | = - MZT0)fkzad M ~coordinate - [= - 1{(65]

That takes care of two of our coordinates. For our z coordinate, let’s use another = block to
create a similar z_coordinate condition and then take our first and block and place it into the left

slot of yet another and block. The z coordinate block will fit into the right slot of the and
statement.

[ERTEI main |

Eo JUREHORN | function when [Event | happens

(©] function
2y me - JEll info + J5Y player |
=4 coordinates - Rl me - & location

T coordinate - Rl coordinates +] x|
=1 coordinate - LM coordinates - B v)
=17 cooridnate - LM coordinates - B z)

. i :
(s e en| | R e e @) | T | G | e @)

NOTE: Minecraft does not measure location in whole numbers. Instead it calculates decimals, down to
the thousandths place (or in the case of height, the millionths place). This provides a bit of a problem
for defining a location. Currently, our mod is checking to see if our location is equal to equal to EXACTLY
210.000, 65.00000, 92.000. This point is incredibly small, and it is unlikely the player will ever enter
these exact coordinates.

The easiest way to solve this problem is to define our location in terms of an area, rather than as a
specific point.

First, change all of the = symbols to > symbols by clicking the triangle next to them.

LearnToMod.com 62 §Aﬁ%ZThoughtSTEM.com

(%) function [RETY

Gofunclion [funciion UL player move v JSE EIE DS

BRI check_location

P oorainates v JElM me v B location)
P cordinate v JEH coordinates v B
P=Ty Coordinate + Lol

P~ oorianate v JelM coordinates v B]

o if | : -
7 e (e e]| 0| (e e e)| |20 e e o)

Now the mod will activate when the player's location is greater than or equal to our coordinates.

Now we need to add some further restrictions, so the mod does not activate in ALL locations above our
desired coordinate. Copy the and blocks we have created so far, and change all of the > symbols to <.
Also change each number block to 1 greater than its current value.

o I cooramere 1] < M2 e oo~ Ty cooraimee -1 < - TGS T} | it AT =_cooronete 1 53]

Now, we need to plug all of these arguments together! We can simply create another and block to
connect these new arguments to our old ones. This works great, and the only downside of it is that it
creates a really big block that can be hard to view all at once. For ease of viewing in this guide, | am
instead going to create a second if block inside of the do function of our first if block, and plug our new
arguments into it. In this particular case, these two methods are functionally identical, it simply adjusts
the order that the arguments are evaluated in.

(&) function [SERY

Eofunl:ﬁun [function when [EEli L8 Event | happens

(W0 check location
S5l me v SN info v B player)
B coordinates v JielH me v i) location |

BT x_coordinate v LM coordinates v g x)
Sl y_coordinate v JGMM coordinates v o1 y
L1 z_cooridnate v JGMM coordinates v §o1 7

@) if |
=N e > [T) kand i round + TH v _coordinate -] [> - [W[65)
do (&) if |
1 e (<« (W71) ke N rouna » JH v coordinate + 1< M6]

228 e ound I z_cooricnaie -] = - If{52]
Houna] 0 &

Now, our mod will check to see if they players coordinates are equal to, or above, our desired values
(first if block). If they are, the mod will use the second if block to make sure their coordinates are not
greater than 1 block away from the desired values. If this is also true, the mod will continue to the do
section of the second if block. To finish off, let's put some code in this section! Grab a World strike

LearnToMod.com 63 éﬁ% ThoughtSTEM.com

lightning at block from the World tab. For our location, let's use the player's location, since we
conveniently already have this saved in our coordinates variable. Just plug this variable into the
empty space and we are all done!

Final Mod

ERTLE main |

RIS check _location |
24 me v JGWM info v &Y player |
e ordinaies v LM me » B tocation]
B=T coordinate » ReMH coordinates v 1
A ordinate v JLRM coordinztes v B v
e oorinate v JLIM coordinates v B 2]

() if ¢ r -
o T e e |0 ‘cmm.| =) e M oong T -_cooriinaie -][> Iif57]

do (& it (¢ (and v If :
| D | e | e en | | 650 e e 6 @ Mound - T coorianae -] < - 155
:

Now, whenever the player moves, the mod will check their location. If the player’s x, y and z
coordinates are above a threshold value, the mod will check the x, y and z coordinates to make sure
they are also below another threshold value. If they are, then the player must be within our desired
location, and the mod will create a lightning strike.

Be sure to test your mod by clicking the “MOD” button at the top of the screen and running your mod
in Minecraft.

Common Questions and Errors

There is plenty of room for mistakes in this mod. If a student is receiving an error when they attempt to
run their mod, check to make sure their spellings are consistent throughout the mod, otherwise they
may be telling the computer to take data from variables that don’t exist!

If their mod is not producing errors, but is not causing a lightning strike, double check their > and <
signs, to make sure they are oriented correctly. Students will often get them backwards and create
mods that will only activate when the player's x coordinate is less than ‘210’, while also being greater
than ‘211",

We hope you have found this sample curriculum helpful, easy to follow, and complete. If you have
comments or questions or find any errors, please send an email to: mltm@maine.edu. Thank you.

Syntax Conventions used in document. New terms of any type are in Italics, for the first time; definitions are also in italics.
References to use any code blocks (LTM, etc.) are Bold. User typed code is in Courier New font. All references to LTM use
the case and naming conventions that are used in the actual Blockly or code examples, for clarity and consistency.

LearnToMod.com 64 §A£#(ZThoughtSTEM.com

mailto:mltm@maine.edu

