

Example Curriculum

LearnToMod.com ThoughtSTEM.com

Table of Contents
How can I teach coding if I don’t know how to code?!? 4

The Curriculum 5

LearnToMod Day 1: Suggested Introductory Lesson. 7

Ge�ng Se�led 7

Introducing Mods 7

Why coding can be challenging 8

Tour LearnToMod 8

Wrapping Up 8

Functions: Chapter 1, Lesson 1 9

Goal 9

Defini�on 9

Code 9

Final Mod 12

Common Ques�ons and Errors 12

Events: Chapter 1, Lesson 2 14

Prerequisite: Func�ons Lesson 14

Goal 14

Defini�on 14

Code 15

Final Mod 16

Common Ques�ons and Errors 16

Variables: Chapter 1, Lesson 3 18

Prerequisite: Events Lesson 18

Goals 18

Defini�on 18

Code 18

Final Mod 21

LearnToMod.com 1 ThoughtSTEM.com

Common Ques�ons and Errors 21

Drones: Chapter 1, Lesson 4 22

Prerequisite: Func�ons 22

Goal 22

Defini�on 22

Code 22

Final Mod 24

Common Ques�ons and Errors 24

Locations: Chapter 1, Lesson 5 26

Prerequisite: Drones 26

Goal 26

Defini�on 26

Code 26

Final Mod 27

Common Ques�ons and Errors 28

Loops: Chapter 2, Lesson 1 29

Prerequisites: Func�ons, Drones 29

Goal 29

Defini�on 29

Code 29

Final Mod 30

Common Ques�ons and Errors 31

Logical Statements: Chapter 2, Lesson 2 32

Goal 32

Defini�on 32

Code 32

Final Mod 36

Common Ques�ons and Errors 37

Inner Loops: Chapter 2, Lesson 3 38

 LearnToMod.com 2 ThoughtSTEM.com

Prereq: Loops Lesson 38

Goal 38

Code 38

Final Mod 39

Common Ques�ons and Errors 40

Functions with Parameters: Chapter 3, Lesson 1 41

Goal 41

Defini�on 41

Code 41

Final Mod 47

Common Ques�ons and Errors 48

Events with Parameters: Chapter 3, Lesson 2 49

Goal 49

Defini�on 49

Code 49

Final Mod 53

Common Ques�ons and Errors 54

Events with Player's Location: Chapter 3, Lesson 3 56

Goal 56

Defini�on 56

Code 56

Final Mod 64

Common Ques�ons and Errors 64

LearnToMod.com 3 ThoughtSTEM.com

How can I teach coding if I don’t know how to code?!?

Technology has many conveniences, however the breakneck pace of it’s development has created a
uniquely difficult problem for today’s teachers. Coding is unques�oningly an important skill for modern
students, and will only become more important in the future, but many teachers (including the author
of this curriculum) received li�le to no formal educa�on in coding.

While programming may be daun�ng at first, we implore you to always remember the first and most
important rule of coding, concisely summarized here by Science Fic�on author Douglas Adams:

“Don’t Panic.”

We, here at LearnToMod, have been hard at work crea�ng resources, lessons and guides for teachers
and students alike. With these resources will have no trouble providing your students with quality
coding lessons lessons, regardless of your prior experience.

We must emphasize that this curriculum is by no means the only way to use LearnToMod in a
classroom. The most important educa�onal tool in any classroom is the teacher, so we encourage you
to tweak, change, or throw away as much of the curriculum as you like to provide the best possible
experience for your students.

Let's get started!

 LearnToMod.com 4 ThoughtSTEM.com

The Curriculum
A�er the introductory lesson, each lesson in the Example LearnToMod curriculum is divided into two
halves -- “Level Up” �me and the “Mod of the Day.”

During Level Up �me, students will u�lize LearnToMod’s built-in instruc�onal tools and badge-based
lessons to explore their own interests, at their own pace. In this period, the role of the instructor is to
act as a facilitator for the students, guiding them through difficul�es while providing advice and
encouragement.

A sample of LearnToMod’s available badges, found in “Skills and Drills.”.

If students are feeling confident in their coding abili�es, they may choose to a�empt a “Challenge
Card.” Challenge Cards contain ideas for mods and task students with discovering how to code them.

A sample of beginner challenge cards.

LearnToMod.com 5 ThoughtSTEM.com

Students will track their badges and challenge cards on a LearnToMod “Journey Sheet.” A�er
comple�ng a set number of badges and challenge cards, the student will test their knowledge by
designing and crea�ng their own personalized mod. Upon the successful crea�on of this mod, the
student will “level up” and get a fresh Journey Sheet. Level up’s provides the teacher with an easy way
to track students’ progress, provide the students with a sense of progression and accomplishment, and
encourage students to challenge themselves with a variety of ac�vi�es.

During the “Mod of The Day”, the instructor will lead the class in the crea�on of a new mod. Each mod
is outlined in this curriculum and gradually introduces students to essen�al concepts in computer
science, such as variables, loops, and logic. Students are encouraged to use any remaining class �me to
play with the code and add their own crea�ve elements to it.

As the curriculum progresses, the concepts covered in the Mod of the Day increase in complexity. Some
of the most complex mods may require mul�ple class sessions to complete. The instructor is
encouraged to spend as much, or as li�le, �me as needed doing ac�vi�es in each lesson. Instructors are
also encouraged to alter the order of the lessons to best suit their students’ interests. Keep in mind
however, that some ac�vi�es require certain concepts to be covered prior to running the ac�vity. The
prerequisites for each lesson will be listed under the lesson �tle.

Here is an example of how program held for eight 1-hour lessons might be run:

 LearnToMod.com 6 ThoughtSTEM.com

LearnToMod Day 1: Suggested Introductory Lesson .

While many of the lessons in this curriculum can be done in any order, we recommend spending your
first session doing this introductory lesson, or a varia�on of it. It is based on a 1-hour class.

Getting Settled
5 minutes:

● Help the students get seated
● Introduce instructors and mentors
● Take a�endance

Introducing Mods
5 minutes:

Good a�ernoon everyone! My name is ________. How are you all doing today?

Get student responses.

I have a ques�on for you all. Who here likes Minecra�? Does anybody here play Minecra�?

Get student responses.

So, those of you who have played Minecra�, I’m sure you’ve done things dug a mine, used the materials
to build a nice house, and then had that house get blown up by creepers right? Has anybody here ever
played around with Minecra� mods before?

Get student responses.

What is a f?

Get student responses.

“Mod” is short for modifica�on, or change. Basically, mods are used when people change the way the
game works to make cool stuff happen. Has anybody seen any cools mods?

Get student responses.

Those are some awesome mods! In this class, we are going to learn how to make our very own mods!
To make mods, we first need to understand how to talk to the computer and tell it what we want it to
do. This can be kind of tricky, so to make it easier, computer scien�sts have made special languages to
talk to computers. We call this “coding.”

LearnToMod.com 7 ThoughtSTEM.com

Why coding can be challenging
20 minutes:

The hardest part about coding is understanding that what may seem obvious to us is not always obvious
to a computer. Let me show you:

Lead the class in an ac�vity demonstra�ng the difficul�es of explaining the task to something
that has no knowledge of the task. Explain to the students that you are a computer and the
students must program you to perform a specific task. Pick a task the students are familiar with
(making a sandwich, pu�ng on shoes, etc.), and have the students give you step-by-step
instruc�ons to complete the task. In each step of their instruc�ons, you must deliberately
misinterpret everything they recommend. For example, if the students say, “Put the shoe on”,
place the shoe on a shelf or table. If they correct themselves and say, “Put the shoe on your
foot” place the shoe on top of your foot, rather than put your foot inside of the shoe.)

All right! So what went wrong?

Get student responses.

Computers don’t understand the world like we do, so we need to be very specific and very clear with
the instruc�ons we give them. Code helps us to do that. We are going to be using a special coding
language that has been made specifically to make mods for Minecra�. Who wants to get started?

Tour LearnToMod
20 minutes:

● If possible, show students the LearnToMod website on a projector and briefly walk through how
to sign in. We recommend passing out student name tents, and Take Home Sheets, so students
can easily keep track of their login informa�on.

● Once signed in, you can take a moment to give the students a tour of the LearnToMod website,
or you can play our video tour. The video tour can be found at h�ps://youtu.be/3RIZ9T_u1Mo .

● Students should spend any remaining class �me comple�ng lessons in the “Skills and Drills”
badge collec�on, found on the LearnToMod site under menu item: Learn > Badges.

● It is a good habit for students to test their mods a�er each step, to make sure they are on track.
While this may not be feasible for every lesson, students should definitely test their final mods.

Wrapping Up
10 minutes until class end

● Give 5 minute warning!
● Remind them to take their creden�als sheets home.

 LearnToMod.com 8 ThoughtSTEM.com

https://youtu.be/3RIZ9T_u1Mo

Functions: Chapter 1, Lesson 1

Goal
● Make a mod with mul�ple func�ons that

○ Sends the player a message
○ Gives the player a sword

● Work through the Func�ons badges

Definition
The function is the most basic building block of a program. Func�ons act like instruc�on books for us to
put all of our code inside of. When a mod first starts, the computer will look for a func�on called main

(in all lowercase). As the first step in any mod, if a main function is not present, the mod will not
proceed.

Code
In each mod, we always need ONE and ONLY ONE main func�on. As the star�ng loca�on for our
program, without a main func�on containing instruc�ons, the computer will be unable to navigate our
code and we will get errors when trying to run our mod. Mods are not limited to a single func�on; quite
the opposite! Mul�ple func�ons are a great way to organize code.

To create a new function , we need to define it. To the le� side of the LearnToMod code editor (the area
of LearnToMod where users can create code), click Functions and click the purple block with a mouth,
function ‘do something’ ; this is called a function definition.

LearnToMod.com 9 ThoughtSTEM.com

Drag this block into your workspace. To rename it, click on ‘do something’ and type main . When we
run our program, our computer will start at the top of the main func�on and do every command in
the order they appear.

Let's put a command in this func�on. Click and dropdown the Minecraft menu and click Players . Find
and click the red block, Send message ___ to ___ .

Drag this block into the “mouth” of the main func�on. Now click Text and click on the aqua “_” (an
empty text block) and the red me block from Players . You will find that these blocks fit right into the
Send message... block. Click on and type something into the “_” text block. (In the example, the
programmer typed HELLO WORLD . Your mod should now look something like this:

Demonstrate this mod in ac�on or, if students are logged onto their accounts, have them test their
code.

Now, let’s create a func�on to give the player weapons. We can call it whatever we want, but I suggest
you give it a meaningful name. For instance, if you have a func�on that gives your player weapons, you
can give it a name like give_weapons instead of cool_function . In large programs, you may
have dozens of func�ons to keep track of, so proper (logical) naming helps a lot to organize them.

Note: When naming functions , the first le�er of every func�on must be lowercase.

Note: In this example, the “naming conven�on” of func�ons uses lowercase words connected by the
underscore character, such as give_weapons . However, in some mods, programmers use
slightly different conven�ons, such as giveWeapons where all words are connected and all
words a�er the first word are capitalized. As men�oned above, the first character of a func�on
must be lowercase.

 LearnToMod.com 10 ThoughtSTEM.com

Let's make this new func�on give the player a diamond sword. Under the Item tab, click on the
command Give ___ of item type _____ to player____ . Fill in the blanks with a 0 number block from the
Math tab, a DIAMOND_SWORD block from Materials , sec�on [D-G], and a me block from the Players
tab. Plug these blocks into the Give item... block and put the whole thing into our new func�on. Change
the number block from a 0 to a 1 .

Now we have two func�ons! We aren’t quite done yet though. Our main func�on is the only func�on
that automa�cally runs when we ac�vate our program. If we want to run other func�ons, we need to
tell the computer to do so. We can do this with a function call. Let's add one to our main func�on.

LearnToMod.com 11 ThoughtSTEM.com

Under Functions , you should see a block that shares a name with your func�on. Get this block and
place it inside of your main func�on.

Final Mod
You should now have a mod that looks something like this:

This mod will first send a message and then call our “give_weapon” func�on, which will give our
character a diamond sword.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
● Students may recognize that the Give … item ... command could simply be placed in the main

func�on, elimina�ng the need for a func�on call altogether. This is 100% correct, and these
students should be praised for finding a more efficient solu�on. Reiterate to students that
func�on calls are very helpful if the same code must be run mul�ple �mes, or if the code must
only be run when specific criteria are met. Func�ons can also be a useful tool for organizing
large chunks of related code.

 LearnToMod.com 12 ThoughtSTEM.com

● If code is not running properly, students should check that they have properly created a main
func�on and that they are calling the second func�on from it. Check that the number 0 is
changed to 1 . Computers are very picky about syntax!!

● A good way to troubleshoot code is by tes�ng with parts of the code that seems to work and
gradually adding other parts into the ac�on. By right-clicking on a block in the editor, it may be
disabled (click Disable block), which will grey out the block and any of its contents. Remember
to Mod before trying your code again in Minecra�.

LearnToMod.com 13 ThoughtSTEM.com

Events: Chapter 1, Lesson 2

Prerequisite: Functions Lesson

Goal
● Make a mod that strikes lightning and spawns an en�ty, every �me the player breaks a block
● Work through the Events badges

Definition
An event is any occurrence of a specific set of circumstances (it can also be called a trigger) . When an
event occurs, the game will run specific code in response. In Minecra�, there are probably a couple of
hundred different events happening at any �me and we might not be aware of them. Some of these
events are basic or frequent: block_break ; player_chat ; entity_death . Others are specific, such
creeper_power; entity_combust_by_block; or player_bucket_fill . The LearnToMod so�ware already
has some of these events hard coded (programmed) into the Event block dropdown menu:

 LearnToMod.com 14 ThoughtSTEM.com

Code
Let's start by using a block_break block and a do function __ when __ happens from Events . Plug the
block_break Event block into the second slot of the Do function… block. Now create a main
func�on and put the new event code inside of it.

The do function ... block says that when a specified event is triggered, it can run a specific func�on.
Create a new func�on called something_broke or a similar name. Under Misc , grab a black
function ‘function name’ block. This black block should fit into the other space in our do function event
block. The black block is a function reference and it refers (directs) the code to run that func�on
whenever the defined event happens. Change the text in the black func�on block from ‘function name’
to the name of the new func�on; in the example it is something_broke .

Now we have an event! As long as our mod is ac�ve, any �me the player breaks a block, our mod will
run our something_broke func�on! Now just need to put some code inside of it. We want this
func�on to strike lightning and summon a zombie. To strike lightning, click on World strike lightning at

___ from the World tab. Plug it into our new func�on. The blank space in this command must be filled
with a loca�on. Get a me block from Players . The me block refers to the player, however the player has
lots of pieces of informa�on -- values, characteris�cs, etc. -- associated with them. The computer
doesn't know what informa�on we want to use. We need to specifically request the location of the

player . Under the Entities tab, get a location of block. Plug this into the space in the World strike

lightning ... block. Then, plug the me block into the slot le� by the location of block.

LearnToMod.com 15 ThoughtSTEM.com

Now let’s summon (or spawn) a zombie. To do this, we will use the Perform command __ for player __
block, from the Players tab. Fill in the two spaces in this block with an “ ” Text block and a me block,
respec�vely. Minecra� has numerous commands that can be executed in-game. The Perform command
... block lets us use some of those. Some students may have used some of these commands, either
through Minecra�’s in-game Command Line , or the Minecra� Command Blocks . Tell these students that
any commands they know will also work inside of LearnToMod. In this case, we want to summon a
zombie, so type summon Zombie into the text block.

Note : Commands are case sensi�ve. Minecra� commands (in LearnToMod) use a specific naming
conven�on, including lowercase first word, spaces between each word, and an uppercase le�er
to begin second and subsequent words.

Final Mod
Your code should look something like this:

In this code, the aqua do function ... block is telling the computer to run the func�on
something_broke whenever a block is broken. According to this code, when we run the mod, the
computer will write a note in its memory that says, “Whenever a block breaks, I will run the
something_broke func�on. ” The something_broke func�on will cause the program to
strike lightning and spawn a zombie.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
Some students may discover they can create an event in which a func�on runs itself! While this prac�ce
may have uses in some cases, generally, it is highly discouraged.

 LearnToMod.com 16 ThoughtSTEM.com

If improperly designed, a func�on that runs itself can lead to an error called a memory leak . In short,
when the event occurs, the func�on duplicates itself to create two iden�cal func�ons. When the event
occurs again, these two copies duplicate themselves to create four iden�cal func�ons. This duplication

continues exponentially, at every instance of the event, slowly using up all the available memory of the

computer. If the leak con�nues, all the working memory of the computer will eventually be used up,
resul�ng in the server crashing. If this does occur, simply restart the student’s server.

It is also very important that the “summon Zombie” command be forma�ed exactly as it is wri�en
above. Code with errors in spelling, capitaliza�on, or punctua�on will not work properly. Explain to
students that computers don’t have the same reasoning that we do and cannot infer what we are telling
it. While a mistake in punctua�on may be small to us, it’s big to a computer.

LearnToMod.com 17 ThoughtSTEM.com

Variables: Chapter 1, Lesson 3

Prerequisite: Events Lesson

Goals
● Create a counter to count the number of blocks the player has broken
● Work through the Variables badges

Definition
In programming, a variable is a value that can change depending on conditions or information passed to

the program . A variable can represent something as simple as a single number, or as complex as an
en�re func�on. Each variable has two attributes : its name and its content . The programmer can choose
to use either or both of these, depending on what the mod needs.

We can have as many variables as we want. Variables come in all kinds of different types, to hold
different contents. For example, variables can represent numbers, “drones”, “booleans” (true or false),
“strings” (text), lists, or any other value you want to give it: Here are some variables that have been
defined in this LearnToMod code:

Code
When we are programming, using a variable requires that we first declare it. When we declare a

variable , we give it a name and tell the computer what it represents (the type of content). While

variables can be defined anywhere in your code, a variable cannot be used until the computer reads the

definition. As such, it is good prac�ce to put variables at the very beginning of your code, so they are
the first thing the computer reads.

 LearnToMod.com 18 ThoughtSTEM.com

You can create variables by selec�ng Variables in the menu. Choose the set ‘item’ to block. To change a
variable’s name, click the dropdown arrow next to ‘item’ , click New variable… , and type in your
variable’s name. Remember to make the name meaningful. This makes it easier for you to keep track of
them and easier for other people to read your code.

This only takes care of the first attribute , the name. Now, we have to tell the computer what the
variable is going to contain (content). Let's make a program that will count the number of blocks we
break. If we want to count something, we’ll need a blue number block, 0 . Go ahead and get one from
the Math tab.

Next, we should create a block_break event and another func�on that will run when the event occurs.
You will find needed blocks in Functions , Events , and Misc .

Every �me we break a block, we want the computer to add one to our count and send us a message
with the count. If you open up the Variables tab, you’ll see that we now have two different blocks that
represent our variable a�ributes.

LearnToMod.com 19 ThoughtSTEM.com

These blocks both refer to our variable, but they do slightly different things. The first sets our variable to

a new value . The second will give us (gets) the value that is currently stored inside of the variable.

To add to our count, we’ll need to use both of these count blocks, as well as a 0 number block, and
a ___+___ block. Both of these blocks can be found in the Math tab.

Every �me we break a block, we want to set our variable, count , to the previous value + 1. To
accomplish this, arrange your blocks as follows:

Be sure to change the number block from 0 to 1 . If we don’t change this value, we will add 0 to our
variable every �me the func�on is run and the variable will never increase!

To see the value (content) of the variable, we’ll send the player a message. Get a Send message.. . block
from Players . Put a copy of our variable in the first slot, and a me block in the second slot (Variables

and Players).

 LearnToMod.com 20 ThoughtSTEM.com

Final Mod
Our final mod contains an event, which when triggered by a player breaking a block, will add 1 to our
count and send us a message containing the value of our count. Your code should look something like
this:

If students are mo�vated, challenge them to add code that will subtract from their counter, if they place
a block.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
● Understanding the func�on reference block; why not just call func�on directly? When to use it?
● Syntax is cri�cal to programming. If students are ge�ng errors when they test their mods, have

them check each le�er’s case and all punctua�on.

LearnToMod.com 21 ThoughtSTEM.com

Drones: Chapter 1, Lesson 4

Prerequisite: Functions

Goal
● Create a mod that will place a block for us
● Work through the Drones badges

Definition
A drone is like an invisible robot that helps you, in Minecra�. This drone accepts step-by-step
instruc�ons, which tell it how to move. They are basically loca�on-based, making them very useful
when building something, or when spawning mobs (creatures), in specific places.

You can program a drone to move in six direc�ons (up, down, forward, backwards, le�, or right) by any
amount of distance. The metric for distance in Minecra� is a block, therefore, if you give a drone a
command, such as…

...the drone will move 6 blocks to the le�.

Code
Before using a drone in our mod, we have to declare it within a variable. To do this, we go to the
Variables menu and get the generic variable declara�on block, set ‘item’ to . Select New variable...

A small window will open in our browser and it will ask us to type in a name. The default name for the
drone is simply d , but you can name it whatever you want. Keep in mind that if you name your drone
something other than d , you will need to change the default name in the blocks we use to command

 LearnToMod.com 22 ThoughtSTEM.com

the drone as well. Once we select a name, we must get a new Drone block from the Drone menu
(under Minecra� menu) and a�ach it inside our variable:

This basically tells the program that whenever we refer to d , we are talking about our drone. Explain
to students that in this case, our variable is acting as a name tag . In some complex projects, you may
use several drones simultaneously, so each drone must have a unique name to differen�ate them. Now,
we can start using our drone in our program.

As always, we should start our mod with a main func�on. Put your drone defini�on inside of it.
Remind students that although variables can be defined anywhere in your code, the computer has to be
aware of it before a variable can be used. Best prac�ce is to set variables at the beginning of your code,
so they are the first thing the computer reads.

Now that our drone is defined, we need to give it some commands. Under the Drone tab, get the block
Move Drone ‘d’ in direction ‘up’ distance ‘1’ . Students may no�ce there are two separate blocks that
both say the same thing. The difference between these blocks is the slot for the number block , rather
than a number space. These blocks would work iden�cally in this lesson, however using the number
block is more versa�le, as we will see in future lessons. The number block may be replaced with a
variable, allowing the drone command to be modified with code.

Now that we have a movement command, let’s tell the drone to place a block. Find a Drone ‘d’ places

block of type ____ command, in the Drone tab. Fill the empty slot with a DIAMOND_BLOCK block from
the Materials tab, [D-G] .

Note: This mod will not work if the empty space is filled with a DIAMOND block, rather than a
DIAMOND_BLOCK block. This is because DIAMOND simply refers to the raw material, whereas
DIAMOND_BLOCK refers to an actual object that may be placed in the world.

LearnToMod.com 23 ThoughtSTEM.com

Final Mod
Our mod will now create a drone, move it up, and command it to place a diamond block. Your code
should look something like this:

Students can repeat these commands to make the drone place mul�ple blocks and build simple
structures. If students have already learned to use loops, challenge them to use a loop to build a tower,
with this code.

Test your mods by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
● The most common mistake for students to make a new variable (for example, drone1), but

then forget to change the default variable, ‘d’ , in other blocks of code. For example…

This will produce an error. The variable drone1 is defined, but never used in the func�on.
The second and third blocks call for a drone named ‘d’ that has not been defined in the func�on.
This error can be easily solved by either changing ‘d’ in the second and third blocks to drone1
, or by renaming drone1 to d .

 LearnToMod.com 24 ThoughtSTEM.com

● As noted above, some students may also tell their drone to place blocks of type DIAMOND ,
rather than DIAMOND_BLOCK . This will not work, as DIAMOND simply refers to the material,
whereas DIAMOND_BLOCK refers to an actual object that may be placed in the world. Explain
that while this seems like a small difference to us, it’s a pre�y big one to the computer!

LearnToMod.com 25 ThoughtSTEM.com

Locations: Chapter 1, Lesson 5

Prerequisite: Drones

Goal
● Strike lightning at the loca�on of a four different drones
● Work through the Drones and Loca�ons badges

Definition
So far we’ve been using a single drone to build structures. However, we can control mul�ple drones at
the same �me. This will allow us to make things happen simultaneously, in mul�ple loca�ons.

Code
In this lesson, we are going to create a mod that will strike lightning 5 blocks in front of, behind, to the
le�, and to the right of the player. First, we need to create 4 drones. We can name them whatever we
like, but each name must be unique, so we can control them separately. In this example, I’ve named
them df, db, dL, and dr , for drone forward, drone back, drone le�, and drone right.

Now let's move the drones! Get four ‘Move Drone…’ blocks. Change the distance moved for each block
to 5 . Now, we need to select the direc�on for each drone. To specify which drone you are moving, click
the arrow next to ‘d’ and choose the appropriate drone. Change the direc�on by clicking the arrow next
to ‘up’ . Make sure you are moving the right drones in the right direc�ons! This can make it possible to
keep track of drones, within complicated mods.

NOTE: Blocks may be copied and pasted (Ctrl C and Ctrl V) or duplicated, by right-clicking on block and
selec�ng Duplicate .

 LearnToMod.com 26 ThoughtSTEM.com

Our drones should be set to move to the correct loca�ons. All we need to do is strike lightning at the
loca�on of the drones! Use four World strike lightning at ___ blocks from the World tab. To specify the
loca�on to strike lightning (our drones’ loca�ons), a�ach the location of block from Entities to each of
our drone variables.

Final Mod
Your code should look like something like this:

We now have a mod that will strike lightning all around the player! We created 4 drones, moved them,
and told the mod to strike lightning at each of their loca�ons. We can use location of blocks to specify
the loca�on of many different things in Minecra�. The only limita�on is that we must be very clear with

LearnToMod.com 27 ThoughtSTEM.com

our references. For instance, we cannot say location of ‘EntityType’ ‘pig’ , as Minecra� has hundreds of
pigs, and the mod will not understand which pig to use.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
Since we are working with mul�ple drones, it is easy to mix up their names. If students are having
difficulty, double check the drone names in the commands to make sure each drone is used. Using
graph paper to chart out direc�ons can also be helpful, when drone movement is confusing.

 LearnToMod.com 28 ThoughtSTEM.com

Loops: Chapter 2, Lesson 1

Prerequisites: Functions, Drones

Goal
● Create a Mod that uses loops and a drone, to build a 30 cube tall tower
● Work through the Loops badges

Definition
Some�mes (especially when making buildings) we will want to create a mod that will do the same task
over and over again. Coding this by hand can be a pain and take a while. However, computers are very
good at repea�ng the same thing over and over. In many cases, we can give the majority of our
codework to the computer by using loops .

Code
In this mod, we are going to use a loop to command a drone to build a tower. Create a main func�on
and a new drone.

To make a tower, we need the drone to place a block, move up a space, and repeat the pa�ern un�l a
tower has been created. Get a Drone ‘d’ places block of type ____ , from the Drone tab, and fill the
space in it with DIAMOND_BLOCK from Materials . Now get a Move Drone … distance ‘1’ block from
Drone .

LearnToMod.com 29 ThoughtSTEM.com

Here’s the problem; if we want to create a tall tower, we will need to repeat these two commands over
and over, telling the drone to repeatedly place a block and move up. This is boring and inefficient. We
can make our lives easier by using a loop.

You’ll find mul�ple op�ons for loops, inside of the Loops tab.

There are lots of different varia�ons of loops. All of them are useful, but to begin with, we’ll just use the
repeat ‘10’ times loop. Use this loop inside of your func�on, right below the new drone.

Now, move the Drone ‘d’ places block of type _____ and Move Drone ‘d’ in direction ‘up’ distance ‘1’
blocks into the do segment of the loop.

Final Mod
Your final mod should look something like this:

 LearnToMod.com 30 ThoughtSTEM.com

A loop is a simple and easy way of telling the computer to do the same thing over and over again. In this
case, we are telling our drone to place a block and move up. Then, the computer will move back to the
start of our loop, and repeat the code. Currently it will repeat this loop 10x, but we can change this by
adjus�ng the number block at the top of the loop, allowing us to easily adjust our mod.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
The most common mistake for students first using loops is usually simply placing the loop in the wrong
loca�on of our code. For example, many students will try to place the set ‘d’ to new Drone command
inside of their loop.

This will not func�on correctly. Drones always spawn at the loca�on (block) at which the player is
looking, when the mod begins. When the code pictured above starts, it will begin the loop and create a
new drone. The drone will move up and place a block. The func�on will then loop back and replace this
drone with a new drone, sending it back to the star�ng loca�on. Since the drone is being reset at the
start of every loop, it will never move above 1 block in height.

LearnToMod.com 31 ThoughtSTEM.com

Logical Statements: Chapter 2, Lesson 2

Goal
Make a mod that strikes lightning a�er the player has walked a set distance

Con�nue to work through the Loops badges

Definition
Up un�l this lesson, we have focused mostly on telling the computer what to do. With logical

statements , we teach the computer how to think. While there are many different types of logical
statements, one of the simplest, but most useful, is the If statement .

In the first part of an If statement, we give the computer a true/false statement to evaluate. Examples
might include determining if: the player is at full health; the player is holding a sword; there are three or
more enemies nearby. This part of the if statement is called an argument . IF this argument is true, the
computer will execute (perform) a specific piece of code. If the argument is false, the computer will skip
this code and con�nue on with the rest of the program.

In short, the basic structure is…

Simple as it seems, If statements are at the core of even the most complex programs.

 LearnToMod.com 32 ThoughtSTEM.com

Code
We are going to create a mod that will count the steps the player has taken and strike lightning every 10
steps. To begin, let's command a lightning strike -- found in the World tab. We want the lightning to
strike at our loca�on, so we need a location of block from the Entities tab and a me block from the
Players tab. Put these blocks together and plug them into the remaining blank space. Put the whole
command into your main func�on.

Now our mod will strike lightning whenever we run it! To have lightning strike when our character
moves around, create and name a new func�on and move the World strike lightning command into it.
To add an event, or trigger, use a do function ____ when ____ happens block (Events) in the main
func�on. Now fill the second slot with a ‘ block_break’ Event block. Use the dropdown arrow to the
right of block_break to change the type of event. Switch the event type to player_move . Fill the first
slot with the black function ‘function’ call block, from the Misc tab. Make sure you change the func�on
block to reference your new func�on. Your mod should now look similar to this:

Our mod will strike lightning every�me we move (walk). We need to add in some logic. In the Variables
lesson, we created a mod that would count how many blocks we broke. This mod uses very similar
code. Create a new variable in the main func�on named count . In our walk func�on, use Math
blocks to add 1 to this variable.

LearnToMod.com 33 ThoughtSTEM.com

We need an if statement. You’ll find if statements under Logic . Place this block inside of the walk
func�on.

IF the player has walked ‘10’ steps, we want the mod to strike lightning. Go ahead and move the World

strike lightning command into the do segment of the if statement. Your code should look like this:

 LearnToMod.com 34 ThoughtSTEM.com

You will see that there is a blank space directly to the right of the word if . This blank space is where we
will place our argument (the condi�on part of the logic statement.) To make an argument, we need the
Logic block: ____ = ____ . Plug this into the blank space.

The if statement will now check to see if two values are equal. We need to specify the values we want it
to compare. We want the func�on to strike lightning every 10 steps, so we will compare the variable
count to the number 10 . Fill the two blanks with the count variable and a number block from Math .
Set the number block to 10 .

LearnToMod.com 35 ThoughtSTEM.com

Last, but not least, we need to reset our count variable a�er the lightning strike. Add a set count to
block right a�er the lightning strike line and connect a 0 number block to it.

Final Mod
Your code should look similar to this:

With this mod, the computer will run some code every �me the player takes a step. First, it will increase
the step counter by 1, and then it will check if the counter is equal to 10. If count = 10 , the mod will
strike lightning and reset the counter. If the counter does not equal 10, it won’t do anything, un�l the
next �me the player moves.

 LearnToMod.com 36 ThoughtSTEM.com

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
This mod is fairly simple, but has lots of small pieces that can easily get mixed up. If students are having
difficulty ge�ng their mod to work, check to make sure their number blocks are set to the correct
values. Also, make sure the counter is defined at the beginning of the mod and reset during each do
func�on.

LearnToMod.com 37 ThoughtSTEM.com

Inner Loops: Chapter 2, Lesson 3

 Prereq: Loops Lesson

Goal
● Create a Mod that uses loops and drones to build a wall
● Con�nue to work through Loops badges

Code
Back in our first loops lesson, we made a mod that would command a drone to build a tower. Our final
mod looked something like this:

Now, what if we wanted to make a wall? A wall is pre�y straigh�orward to make; it is basically just a
bunch of towers placed side by side. All we need to do is tell the drone to move back down to the
ground, move a bit to the le�, and then build a new tower!

 LearnToMod.com 38 ThoughtSTEM.com

Uh oh, this might be a problem. Our wall is only two blocks wide and our code is already ge�ng pre�y
big. Conveniently, there is an easy solu�on! We can use nested loops -- loops inside of other loops! Let's
get rid of the code for the second tower and put the second loop around the code for the first tower.
The set ‘d’ to block should not be put into the loops!

Since this mod is self contained, it is generally good prac�ce to put it in a func�on of its own and call
the new func�on from the main func�on.

Final Mod
Just like that, we have a new mod! Your code should look like this:

LearnToMod.com 39 ThoughtSTEM.com

When the mod is run, it will create a drone and begin an inner loop. The drone moves up and places a
block and repeats this 10 �mes, to create a tower. When the first tower is done, the drone moves down
10 blocks and moves le� 1 block, before looping back to the top and star�ng over. The nested loop
directs the drone to build a 10 x 10 block wall!

Separa�ng code into mul�ple func�ons can make organiza�on much easier in large and complex mods.
It also minimizes the need for wri�ng the same code over and over. If students want to build walls at
mul�ple places in their mod, it is much easier to simply call the func�on again.

If students want an extra challenge, encourage them to use a third loop to turn their wall into a giant
cube.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

Common Questions and Errors
Some�mes students will confuse the inner loops and add code into it that should stay out. The

logic may not be intui�ve, at first.

 LearnToMod.com 40 ThoughtSTEM.com

Functions with Parameters: Chapter 3, Lesson 1

Goal
● Create a generic func�on that takes input and performs a specific task using that informa�on
● Work through the Func�ons with Parameters badges

Definition
A func�on can be given (passed) extra values when it gets called; these values are called parameters
and they are stored in variables. Parameters are a very efficient way of crea�ng func�ons that are
flexible and can be used in mul�ple, similar opera�ons.

Code
In our second loops lesson, we created a wall by repeatedly looping our tower func�on. This is great,
unless we wanted to change our tower in any way. For example, what if we wanted our wall to be made
of an alterna�ng pa�ern of diamond block towers and slightly higher gold block towers?

We could accomplish this by crea�ng a second tower func�on and repea�ng them one a�er the other.
However, this is inefficient. For example:

LearnToMod.com 41 ThoughtSTEM.com

With a few simple changes however, we can make our wall with half the code.

We will create a new tower func�on that very similar to the mod we created in the first loop lesson --
with some small changes. Instead of embedding the specific number of blocks and block materials into
the individual commands, we are going to use parameters to input the desired number and material for
each tower, as the code progresses . (Think about switching out a peripheral with “plug and play.”) This
way, we can change the pa�ern for height and block type of the towers, without rewri�ng each step
over and over.

Create a main func�on and a drone variable. Create another func�on (example uses tower) for the
towers’ code.

 LearnToMod.com 42 ThoughtSTEM.com

For drone movement, use the Move blocks with the blue number variable block in them.

We use these Move... blocks because we can replace the number blocks with variables. These variables
are going to be a li�le bit different from our previous variables, however. These are going to be
parameter variables. To make a parameter, click the blue gear icon on the function’s top le� corner.

LearnToMod.com 43 ThoughtSTEM.com

The gear icon opens an input window to create parameters. Drag two input name: x blocks into the
inputs sec�on, and name them height and material . Click the gear again to close the window.

It may not look like much has changed, but it has! Check out the Variables . You’ll no�ce that there are
now variables for material and height . Also, at the top of the func�on, with: height, material
appears. Plug the material variable into the drone ‘d’ places block of type ___ command, and place
a height variable into the repeat ___ times slot of our loop and in the Move Drone ‘d’...distance ___
slot. Your code should now look like this:

 LearnToMod.com 44 ThoughtSTEM.com

When we run this func�on, the computer will check to find the values for height and material and
use those values inside of our code. We just need to tell the computer what these variables contain.
Click Function to call your second func�on from the main func�on.

As you can see, our func�on call now contains two extra slots; one for each of our parameters! Click on
the func�on call, and place it in your main func�on. Let's plug some blocks into these slots. Since
height is a number, we’ll want to put a number block (Math) into this slot and set it to 10 .
Material will represent what we want our tower to be made of, so put DIAMOND_BLOCK block into
this slot. Your main func�on should look like this:

LearnToMod.com 45 ThoughtSTEM.com

When we call our main func�on, we specify that we want to build a tower with a height of 10, made of
diamond blocks. We can change these parameters, every �me we call the func�on, if we want. Add
another tower func�on call (or the name of your func�on), but this �me, set height to 13 and set
material to GOLD_BLOCK .

 LearnToMod.com 46 ThoughtSTEM.com

Now, our drone will build a diamond block tower that is 10 blocks high and then build a tower that is 13
blocks high and made of gold. If we set a loop around our func�on calls, we’ll build a wall of alterna�ng
height and material.

Final Mod

This mod begins by crea�ng a drone that builds a tower , with 10 specified for the height parameter
and DIAMOND_BLOCK specified for the material parameter. Next, the drone creates another
tower with 13 specified as the height , and GOLD_BLOCK specified as the material . We repeat
this 10 �mes to create a wall of alterna�ng materials and heights!

Under the appropriate circumstances, parameters are incredibly useful. It is possible to create mods
that achieve similar results, with a crea�ve use of variables and loops, but parameters help to
streamline the process. Addi�onally, more advanced ways of using parameters allow us to access details
(a�ributes, characteris�cs) of our Minecra� world not contained in any of the LearnToMod blocks.

Test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod in
Minecra�.

LearnToMod.com 47 ThoughtSTEM.com

Common Questions and Errors
While programing with variables, it is very important that the correct variables are placed in the correct
places. Some students may mix up their material and height variables. Others may try to replace
all number blocks with height variables, which prevents the tower func�on from ge�ng the
necessary height informa�on from main . If students are having difficulty keeping their variables
straight, encourage them to get some graph paper and draw step by step what their drone is doing at
every step of the mod.

Parameters may confuse some students, because they require using variables to abstractly represent
different values at different �mes. Prac�cing with the Parameters badges, in LearnToMod ‘Skills and
Drills’, will help with this.

 LearnToMod.com 48 ThoughtSTEM.com

Events with Parameters: Chapter 3, Lesson 2

Goal
● Create a func�on that will retrieve informa�on from the player chat
● Work through the Game Events badges

Definition
When some events occur, we want to retrieve and use specific informa�on related to an event. For
example, in this mod, we are going to retrieve the message a player sent during a player_chat event. To
retrieve this informa�on, we will need parameters. Parameters are a type of variable that can be

passed to a function when it runs (or is triggered by an event).

Code
We are going to create a mod that will dress the player in a full suit of armor, when the player types ‘on’
in the chat, allowing them to quickly prepare for ba�le!

NOTE: To trigger a player_chat event, the player simply type T to comment in the chat.

First, we need to prepare some variables. Create four variables: helm; chest; legs; and boots .
(It is suggested that students use the variable and func�on names used in the example, to help to keep
the code clear.) We need to set these variables to represent different pieces of armor. To do this, get
four new Item of material ___ amount ___ block from the Players tab and connect one to each of our
variables. Set a number block from the Math tab to 1 and place it in the second slot of each block.
Now, get one each of the DIAMOND_HELMET, DIAMOND_CHESTPLATE, DIAMOND_LEGGINGS, and

DIAMOND_BOOTS blocks out from Materials [D-G]. Place these blocks into the remaining slots of their
respec�ve variables.

NOTE: Some students may try to simply connect the armor blocks (DIAMOND_HELMET,
DIAMOND_CHESTPLATE, etc.) directly to the variable. While this seems logical, it will not work.

LearnToMod.com 49 ThoughtSTEM.com

The armor blocks represent a type of item, rather than a specific instance of it . Just as I know
what a shirt is, but I can’t give you one unless I have one, the computer knows what a
DIAMOND_HELMET is, but it does not have one for us to wear, unless we tell it to make one. By
using the new Item of material... command, we can tell the computer to build (an instance of)
an item for us.

Next, we need to create an event. We want our mod to be controlled by commands the player puts into
the chat. To do this we need a ‘player_chat’ event. Click Events and the do function ___ when ___

happens . Get the ‘block_break’ Event block and place it into the second blank space. Change the type
of event to player_chat by clicking the dropdown arrow to the right of block_break .

We’ll need a func�on to run as well. Create a second func�on and name it armor . Under Misc , use a
black function ‘main’ block and place it into the first space in the do function ___... block. Now, use the
dropdown arrow to switch the func�on from main to our new armor func�on.

 LearnToMod.com 50 ThoughtSTEM.com

We are going to do something a li�le bit different with this func�on. We want this func�on to retrieve
some informa�on from the event that started it. In this case, we want the func�on to get the message
the player typed into their chat. We will need to add an input to our func�on. Click the gear icon on the
armor func�on to pull up the input window. Drag an input name: ‘x’ block into the inputs block. Now,
type info in where the x is. When you click on the gear icon to close the input window, you will see
that the second func�on says: function ‘armor’ with: ‘info’.

Info contains a lot of, well, info. We need to isolate which piece we want (in this case, the players

message), in a variable. Create a new variable and name it player_message . Now, under Misc , click

LearnToMod.com 51 ThoughtSTEM.com

the ‘ item’ ‘s ‘default’ block. Connect this to the player_message variable. Replace ‘item’ with
info and replace ‘default’ with ‘ message’ .

NOTE: Message is one of many pieces of informa�on that is stored inside info .

The info’s message block will search through all of the available informa�on inside of the parameter,
and retrieve a variable called ‘message.’ Think of info as a chart or array of variables, where, in each
line of the table, one column identifies the variables by name (‘message’) and the other column
contains the content/value of that variable. The variable ‘message’ contains the text the player typed
into player_chat . We are saving this text in our own player_message variable, so we can easily use
it.

What the parameter variable code -- set player_message to ‘info’ ’s ‘message’ -- is saying:

● Create a func�on with the info parameter;
● Define a new variable called player_message;
● Set up our player_message variable to receive the message (text) typed by the player --

stored in the info array (table) under the variable name message .

We want our func�on to check the message the player sent. If the player sent the message “on” we
want the mod to give us a full set of armor.

Open up the Logic tab, and grab an If do block. Place this underneath our new variable.

 LearnToMod.com 52 ThoughtSTEM.com

You will see that there is a blank space directly to the right of the word if . This blank space is where we
will place our argument. To make an argument, we need another logic block. Open Logic and get a
___ = ___ block. Plug this into the blank space.

Now the if statement will check to see if one thing is equal to another. We want the mod to dress the
player in armor when they type “on” into the chat, so let’s check to see if the player_message =
“on”. Get the player_message variable from the Variables tab and place it into the first blank slot.
Then put a blank text block from the Text tab and place it in the second slot. Now, type on into the
text block.

Our func�on will now check the player message. If the player has typed “on” into the chat, the func�on
will perform the code in the do sec�on of the if block. Let's put some code in there!

Under the “ Players ” tab, look for the block Change armour piece helmet to item ___ for player___ .
Place four of these blocks into the do sec�on of our if func�on. These blocks will change the player
armor to the variables’ values we specified in our main func�on. The grey dropdown space in each
Change armour piece ____... block should correspond to a different armour piece. Put the matching
variable into the first blank slot (grey ‘helmet’ to helm , and so on). Finally, fill the second blank slot of
each block with a me block from the Players tab.

Final Mod
Your finished mod should look like this:

LearnToMod.com 53 ThoughtSTEM.com

Whew, that was a long one! Our final mod is pre�y cool, though! Have your students enter Minecra�
and run the mod. To test it, press T to open the chat window, and then type in on (case sensi�ve!!)
You should find yourself fully donned in diamond armor! You can check by pressing F5 to look at your
character. If you are playing in Survival mode, you can also check by opening your inventory, or looking
for the armor icon above your health.

This is just one example of the many parameters that can be retrieved from events. For a full list of
available parameters, check our our “Func�ons with Info” guide.

Be sure to test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod
in Minecra�.

Common Questions and Errors
As noted above, connec�ng armor blocks directly to the variable will not work. It is the difference of the
computer being able to iden�fy what the armor block is rather than producing one for the player to
wear, in response to code.

Some students may have difficulty ge�ng their mod to work. In these cases, check the spelling,
capitaliza�on and punctua�on of “ on ” in their code and when they type it in the chat. Remind them

 LearnToMod.com 54 ThoughtSTEM.com

that while “On”, “on”, “ON”, and “on.”, all mean the same thing to us, they are very different for
computers. The computer will only do our func�on if our command is wri�en exactly as we have
defined it in our code.

LearnToMod.com 55 ThoughtSTEM.com

Events with Player's Location: Chapter 3, Lesson 3

 Goal
● Create a Mod that checks the player's loca�on and strikes lightning when they are standing on a

specific block
● Work through Game Events badges

Definition
We have worked a lot with loca�on, but what if we want to make a mod that will execute only when the
player is at a specific point in their world? This is actually pre�y easy to do!

In Minecra�, the loca�on of any object is defined with XYZ coordinates, just like a graph! This means
that any loca�on in the game can be defined with just three simple numbers! To find coordinates in
game, press F3. This will bring up all kinds of informa�on about the game, including the loca�on of your
player.

Above: XYZ coordinates are marked with red line around them.

NOTE: Some students may not find using the coordinates easy, at first. Remind them that x and y are
the direc�ons that they can use on a flat piece of graph paper, while z would require depth, or a
3D model.

Code
As always, we will start with a main func�on. We will need a do function ___ when ___ happens
inside main. Fill the second slot with 'block_break’ Event and change the event type to

 LearnToMod.com 56 ThoughtSTEM.com

player_move . Now create a second func�on (for example, check_location) and fill the first slot
with the function ‘function’ block from the Misc tab.

Make sure your function block is set to the func�on you just created!

Now, we are going to add some parameters to our func�on. Click the gear , and add a new input . Name
this input info .

Info is a unique parameter. Instead of setting our parameters when we call a function, info will

automatically take information from the event that called the function . In this case, we want to pull the
loca�on of the player from info . We will need a couple of steps to get to this informa�on. First, get
the ‘ item’ ‘s ‘default’ block from Misc .

LearnToMod.com 57 ThoughtSTEM.com

Info is not a single variable; it acts as a container for a bunch of different variables. We want to access
the variable that refers to the player. To do this, change item to info and change default to player .
Now, create a new variable called me and set it to ‘ info’ ‘s ‘player’ .

The variable me will now refer to the player who ac�vated the player_move event.

me, like info, has a lot of variables stored inside of it. We have narrowed things down significantly; all of
the variables contained within me refer to the player. We are interested in our loca�on, so create
another variable and call it coordinates. Now, using another ‘item’ ‘s ‘default’ block, change its values
to ‘me’ and ‘location’. This code will retrieve a variable called location from the pile of variables
associated with our character (me), and save it as a variable we can easily access.

Almost there! As I said at the beginning, location is made up of three numbers, an x , a y and a z
coordinate. We are going to create three new variables and set each to one of these numbers. Create
three new variables called x_coordinate, y_coordinate, and z_coordinate . Set each
of these variables to coordinates ‘s x , coordinates ‘s y and coordinates ‘s z , respec�vely.

 LearnToMod.com 58 ThoughtSTEM.com

And just like that, we have three variables that will tell us the player’s x, y and z coordinates. We can use
these to determine where the player is!

NOTE: We can also determine the player's loca�on without using parameters with the following code:

Truthfully, this method of obtaining loca�on is likely more efficient for iden�fying the player.
However, using we feel that using parameters is an important enough skill that it deserves
reitera�on here.

Now, we need to define where we want the player to be, for our mod to ac�vate. There are a few ways
to do this, but the easiest is probably to simply walk there and check!

LearnToMod.com 59 ThoughtSTEM.com

In my case, I’m going to use 210, 29, 112 as my x, y, and z coordinates. You will likely need different
coordinates for your mod, however, to make sure your mod ac�vates near your current loca�on. To
make the mod perform certain ac�ons when the player reaches a loca�on, we need to use some logic
blocks.

Get an if do block from the Logic tab. We want to check the player's location , in rela�on to the loca�on
where we want our event to occur. Use a ____ = ____ block, and then plug in your x_coordinate
variable, and a number block containing the desired corresponding coordinate.

 LearnToMod.com 60 ThoughtSTEM.com

As you can see, we have a bit of a problem. We only have space for one argument in our if block, but we
need three arguments to define our coordinates. We can solve this problem by using an ____and____
block. This block is also inside of the Logic tab. You can plug mul�ple arguments into an and block. With
the and block, the if block will check to make sure that both of our criteria are true. If either are false,
the if block will not execute the code in the do sec�on. Detach and save the x_coordinate =___.
Create another ____=____ block and fill this one with your y_coordinate values. Put the
x_coordinate and y_coordinate argument blocks into the ___and___ block, and a�ach it to
the if block.

LearnToMod.com 61 ThoughtSTEM.com

That takes care of two of our coordinates. For our z coordinate, let’s use another ____=____ block to
create a similar z_coordinate condi�on and then take our first and block and place it into the le�
slot of yet another and block. The z_coordinate block will fit into the right slot of the and
statement.

NOTE: Minecra� does not measure loca�on in whole numbers. Instead it calculates decimals, down to
the thousandths place (or in the case of height, the millionths place). This provides a bit of a problem
for defining a loca�on. Currently, our mod is checking to see if our loca�on is equal to equal to EXACTLY
210.000, 65.00000, 92.000. This point is incredibly small, and it is unlikely the player will ever enter
these exact coordinates.

The easiest way to solve this problem is to define our loca�on in terms of an area, rather than as a
specific point.

First, change all of the = symbols to ≥ symbols by clicking the triangle next to them.

 LearnToMod.com 62 ThoughtSTEM.com

Now the mod will ac�vate when the player's loca�on is greater than or equal to our coordinates.

Now we need to add some further restric�ons, so the mod does not ac�vate in ALL loca�ons above our
desired coordinate. Copy the and blocks we have created so far, and change all of the ≥ symbols to <.
Also change each number block to 1 greater than its current value.

Now, we need to plug all of these arguments together! We can simply create another and block to
connect these new arguments to our old ones. This works great, and the only downside of it is that it
creates a really big block that can be hard to view all at once. For ease of viewing in this guide, I am
instead going to create a second if block inside of the do func�on of our first if block, and plug our new
arguments into it. In this par�cular case, these two methods are func�onally iden�cal, it simply adjusts
the order that the arguments are evaluated in.

Now, our mod will check to see if they players coordinates are equal to, or above, our desired values
(first if block). If they are, the mod will use the second if block to make sure their coordinates are not
greater than 1 block away from the desired values. If this is also true, the mod will con�nue to the do
sec�on of the second if block. To finish off, let's put some code in this sec�on! Grab a World strike

LearnToMod.com 63 ThoughtSTEM.com

lightning at ____ block from the World tab. For our loca�on, let's use the player's loca�on, since we
conveniently already have this saved in our coordinates variable. Just plug this variable into the
empty space and we are all done!

Final Mod

Now, whenever the player moves, the mod will check their loca�on. If the player’s x , y and z
coordinates are above a threshold value, the mod will check the x , y and z coordinates to make sure
they are also below another threshold value. If they are, then the player must be within our desired
loca�on, and the mod will create a lightning strike.

Be sure to test your mod by clicking the “MOD” bu�on at the top of the screen and running your mod
in Minecra�.

Common Questions and Errors
There is plenty of room for mistakes in this mod. If a student is receiving an error when they a�empt to
run their mod, check to make sure their spellings are consistent throughout the mod, otherwise they
may be telling the computer to take data from variables that don’t exist!

If their mod is not producing errors, but is not causing a lightning strike, double check their > and <
signs, to make sure they are oriented correctly. Students will o�en get them backwards and create
mods that will only ac�vate when the player's x coordinate is less than ‘210’, while also being greater
than ‘211’.

We hope you have found this sample curriculum helpful, easy to follow, and complete. If you have
comments or ques�ons or find any errors, please send an email to: mltm@maine.edu . Thank you.

Syntax Conven�ons used in document. New terms of any type are in Italics , for the first �me; defini�ons are also in italics .
References to use any code blocks (LTM, etc.) are Bold . User typed code is in Courier New font. All references to LTM use
the case and naming conven�ons that are used in the actual Blockly or code examples, for clarity and consistency.

 LearnToMod.com 64 ThoughtSTEM.com

mailto:mltm@maine.edu

