High Quality Research and Evaluation Design in ITEST Projects

Gerald Knezek

Tandra Tyler-Wood Rhonda Christensen

University of North Texas

Overview: Going Green! Middle Schoolers Out to Save the World

- → Funded 2008 2011; Extended through 2013
- ♦ New Funding 2013 to Scale Up to additional environments with increased focus on STEM Careers
 - Year One (Grades 6 8)
 - o 7 veteran classroom teachers in 3 states for treatment
 - Texas
 - Vermont
 - Louisiana
 - 13 classrooms for comparison
 - Hawaii
 - Virginia
 - North Carolina
 - Louisiana
 - Texas
 - Year Two
 - Adding 11 classrooms from Maine, Florida, and possibly other states

Project Locations

Key Activities

- Study electricity and stand-by power
- Inventory home plug-in appliances
- Measure plug-in appliances at home with the power monitoring devices
- Share data with other project participants
- Use data for 'what if' projections

Middle Schoolers Out to Save the World (MSOSW)

Target Audience: 6th – 8th graders Monitoring Standby Power Students in Texas, Louisiana, North Carolina Maine, Vermont, and Hawaii

Funded by the National Science Foundation Innovative Technology Experiences for Students and Teachers (ITEST)

ITEST Goal: Interest in STEM Careers

Project Goals

- Awareness of and Reduction of CO² impact
- Increase student interest of STEM career options
- Out of School activity coordinated in School

Evaluation Design

- Research Layered on Top of Evaluation
 - Strive for Common Instruments
 - o Plan for Cross-Project Sharing
- Treatment vs. Comparison Groups
 - Comparisons → Treatment following year
 - Teacher stipends to collect data (after both pre & post complete)
 - Female vs. Male Contrast Groups
- Formative vs. Summative Evaluation
- Internal vs External Evaluators
 - Internal Evaluation Strong
 - External double-checks and has complementary strengths
 - Quantitative and Qualitative External Evaluators

Evaluation Design: What to Measure

Process

- o Number of schools, teachers, students
- o Training Institutes, Curriculum Enhancements,, Advisory Group Sessions
- Site Visits, Demos, Walk-Throughs
- Program Officer Visits and Summit Attendances

Product

- o Content Gain
- o Attitude Gain
- Career Interest Gain
- o Presentations, Publications

Evaluation Design Considerations

- Treatment and Comparison
- Rural, Urban, Suburban
- Public, Private
- Grades 6,7,8
- Gender
- Number of years in project
- Propensity Matching

Evaluators

- Internal versus External
 - Research Scientist
 - o Co-PI
- Qualitative versus Quantitative
 - Qualitative
 - NVivo
 - Interviews
 - Quantitative
 - ANOVA/MANOVA
 - HLM
 - · PSM
 - · MDS

Instrumentation for STEM Projects

- STEM Semantic Survey
 - Semantic Differential
 - 7-point scale pairs (interesting boring)
 - Science
 - Math
 - Engineering
 - Technology
 - STEM Career
- Career Interest Inventory
 - 13 item Likert (SD to SA), 3 subscales
- Math items from TIMSS
- Attitudes toward School
- Creative Tendencies
- For Year Two Adding Environmental Science Inventory

STEM Semantic Survey

0 11	IE, SCIENCE IS.	- 33	200	2 3		(R - 1	23 - 33		(R)
1.	fascinating	1	2	(3)	(4)	(5)	(6)	7	mundane
2.	appealing	1	(2)	(3)	(4)	(B)	6	Ø	unappealing
3.	exciting	①	(2)	(3)	(4)	(5)	(6)	(7)	unexciting
4.	means nothing	1	(2)	(3)	(4)	(5)	6	(7)	means a lot
5.	boring	(1)	(2)	(3)	(4)	(5)	(6)	(7)	interesting

To me. MATH is:

1.	boring	1	(2)	(3)	(4)	(5)	(6)	(7)	interesting
2.	appealing	(1)	(2)	(3)	(4)	(5)	(B)	(7)	unappealing
3.	fascinating	(1)	(2)	(3)	(4)	(5)	(6)	(7)	mundane
4.	exciting	(1)	(2)	(3)	(4)	(8)	(6)	(7)	unexciting
5.	means nothing	(1)	(2)	(3)	(4)	(5)	(B)	(7)	means a lot

To me, ENGINEERING is:

1.	appealing	1	(2)	(3)	4	(5)	(6)	7	unappealing
2.	fascinating	1	(2)	(3)	(4)	(5)	(6)	(7)	mundane
3.	means nothing	①	(2)	(3)	4	(5)	(6)	7	means a lot
4.	exciting	①	(2)	(3)	4	(5)	(6)	7	unexciting
5.	boring	(1)	(2)	(3)	(4)	(5)	(6)	(7)	interesting

To me, TECHNOLOGY is:

1.	appealing	①	2	(3)	(4)	(5)	(6)	7	unappealing
2.	means nothing	①	(2)	(3)	(4)	(5)	(6)	(7)	means a lot
3.	boring	①	(2)	(3)	(4)	(5)	(6)	7	interesting
4.	exciting	①	(2)	(3)	4	(5)	6	7	unexciting
5.	fascinating	(1)	(2)	(3)	(4)	(5)	(8)	(7)	mundane

To me, a CAREER in science, technology, engineering, or mathematics (is):

1.	means nothing	①	(2)	(3)	(4)	(5)	6	7	means a lot
2.	boring	①	(2)	3	(4)	(5)	6	7	interesting
3.	exciting	1	(2)	3	4	(5)	6	0	unexciting
4.	fascinating	①	(2)	3	(4)	(5)	6	7	mundane
5.	appealing	①	(2)	(3)	(4)	(5)	(B)	(7)	unappealing

Instrumentation

Career Interest Questionnaire

Part 1

Instructions: Select one level of agreement for each statement to indicate how you feel. Your answers will remain confidential.

SD = Strongly Disagree, D = Disagree, U = Undecided, A = Agree, SA = Strongly Agree

		SD	D	U	Α	SA
1	I would like to have a career in science.	0	0	0	0	0
2	My family is interested in the science courses I take.	0	0	0	0	0
3	I would enjoy a career in science.	0	0	0	0	0
4	My family has encouraged me to study science.	0	0	0	0	0

Part 2

		SD	D	J	Α	SA
5	I will make it into a good college and major in an area needed for a career in science.	0	0	0	0	0
_						
6	I will graduate with a college degree in a major area	0	0	O	0	0
	needed for a career in science.					
7	I will have a successful professional career and make	0	0	0	0	0
	substantial scientific contributions.					
8	I will get a job in a science-related area.	0	0	0	0	0
9	Some day when I tell others about my career, they will respect me for doing scientific work.	0	0	0	0	0

Part 3

		SD	D	U	Α	SA
10	A career in science would enable me to work with	0	0	0	0	0
	others in meaningful ways.					
11	Scientists make a meaningful difference in the world.	0	0	0	0	0
12	Having a career in science would be challenging.	0	0	0	0	0

CIQ Ver. 1.0 3/2009.

Adapted from Bowdich (2009) and used by permission.

New Measures on the Horizon

- Attitudes Toward the Environment
 - Likert Scale
- Card Sort: Scientist/Not a Scientist
 - Non-verbal (picture based) measure of construct change
- Career Interest Intent: I plan to have a career in ...
 - o Science
 - Technology
 - Engineering
 - Mathematics
 - o Other

Goal: Move Middle School STEM

Dispositions => STEM Professionals

(Including NSF PIs)

Addition of TAMS – Now a "W" Shape

TAMS: Texas Academy of Mathematics and Science

Longitudinal

- BUGS (9 years later)
- Good Shepherd follow up in 8th grade (2 years later)

Contact Information IITTL.unt.edu

- Gerald Knezek
 - o gknezek@gmail.com
- Tandra Tyler-Wood
 - o <u>Tandra.Tyler-Wood@unt.edu</u>
- Rhonda Christensen
 - o Rhonda.Christensen@gmail.com

 Institute for the Integration of Technology into Teaching & Learning