What is Evidence?

Perspectives from the REESE program evaluation

Joy Frechtling, Westat

ITEST Summit 2012
“Evidence” – different frames at different levels

- Program--investment strategy for advancing understanding across a field or system
 - an accumulation, across projects, across themes/topics
 - broad, tied to full range of hoped for goals
 - extended in time, multiple funding cycles
 - context a subquestion

- Project--a targeted activity aimed at exploring an hypothesis or testing out a model/tool
 - an event
 - specific, tied to selected aspect of program goals
 - time limited
 - context specific?
• Very, very different....

• BUT...let’s look more deeply at the REESE program evaluation and see how different they really are
Goals of the REESE program

The goals of the REESE program are:

1. to catalyze discovery and innovation at the frontiers of STEM learning, education, and evaluation;
2. to stimulate the field to produce high quality and robust research results through the progress of theory, method, and human resources; and
3. to coordinate and transform advances in education, learning research, and evaluation.
Evaluation Questions from NSF

• To what extent is the REESE program catalyzing discovery and innovation in research in STEM learning, education, and evaluation?

• How effective is the REESE program in stimulating STEM fields to produce high-quality, rigorous research studies (with rigor being appropriately defined to reflect the phase of the Cycle of Research and Development that they address)?
Evaluation Questions from NSF (continued)

- How effective is the REESE program in supporting the accumulation of knowledge in STEM education at all levels and in all settings?
- How effective is the REESE program in promoting interdisciplinary research in pursuit of national questions of STEM teaching and learning?
Challenges

Varied status in Cycle of R & D

Figure 1: Cycle of Research and Development
Challenges (continued)

- Short time since program inception
- Attribution of outcomes to REESE
 - Separating impacts of REESE funding from those of other funding sources
 - Lack of a comparison group, benchmarks in some areas
Building the Evidence Base in Program Evaluation

- Recognize that most issues/problems need to be addressed through multiple perspectives—multiple stakeholders, multiple interests
- Use multiple methods to explore hypotheses; triangulate sources of evidence; combine the traditional with the emergent
Building the Evidence Base

- Select designs/methodologies that meet standards of rigor and quality for type/focus of investigation
- Connect work to critical “Big Ideas” in the field; create the case for generalizability
For Example—for Question 1

- Is the REESE program identifying and funding research believed by the field to be important with regard to discovery and innovation in STEM teaching and learning?
Multiple Perspectives

• Is the REESE program identifying and funding research believed by the field to be important with regard to discovery and innovation in STEM teaching and learning?

• To what extent and in what ways is REESE impacting the focus of research proposals submitted to NSF to study STEM learning, education, and evaluation?

• Are projects that receive REESE funding able to use their REESE-supported work to obtain additional funding from NSF or other funding sources?

• Is REESE funding engaging new investigators and future investigators in STEM research on learning, education, and evaluation?
Multiple Methodologies

- Delphi panel—what are the hot issues?
- Review of solicitations—what is REESE asking for?
- Review of portfolio of funded projects—what is REESE funding?
- Review of a sample of unfunded projects—what is being proposed more broadly?
- Survey of PIs (funded and unfunded proposals)—how is the REESE project situated in researchers’ broader research program
Quality and Rigor

- Fuzzy RDD
- Benchmarks from bibliometric data bases
- Use of previous established measures and instruments—review of research rigor
Big Ideas

- Need for interdisciplinary/team approach to address complex problems
- Dissemination of knowledge and building the knowledge base
What makes for evidence at the project level?

- Same principles apply, although the focus is different and the evaluation will look very different
 - Recognize that most issues/problems need to addressed through multiple perspectives—multiple stakeholders, multiple interests
 - Use multiple methods to explore hypotheses; triangulate sources of evidence; combine the traditional with the emergent
 - Select designs/methodologies that meet standards of rigor and quality for type/focus of investigation
 - Connect work to critical “Big Ideas” in the field; create the case for generalizability
What is (your best) evidence?

Taking an NSF program perspective

Patrick Shields, ITEST Program Evaluation
Vera Michalchik, ISE Program Evaluation
NSF requires *real* evidence of *real* learning

- Science content based on standards
- Control conditions
- Random assignment
NSF wants knowledge about

- How to best support strong
 - Programming models
 - Learning outcomes
NSF wants STEM content outcomes

- Importance of standards over the years
- New standards highlight scientific process
- Science is what NSF is about
NSF has broadened view of outcomes

- Friedman *Framework* (2008)
 - Awareness/knowledge
 - Engagement/interest
 - Attitudes
 - Behavior
 - Skills
NSF has broadened view of outcomes

- *Learning Science in Informal Environments* (2009), expands on *Taking Science to School* to make:
 - “Interest” foundational
 - “Identity” central
Science comes first

- “Soft” outcomes have to be secondary
- We know how to test for science learning
Whole experience comes first

- Cognitive/affective don’t split well
 - From each other
 - From context

- Need positive scientific experiences
Need to worry about transfer

- Out-of-school must transfer to school
- School makes science systematic
- School achievement is what counts
Need to worry about interest

- Motivation, engagement, persistence
- School take over afterschool?
- Afterschool influence school?
Need standardization of measures

- Avoid reinventing the wheel
- Demonstrate outcomes that matter
- Aggregate across programs
Need programmatic diversity

- Standard measures => standard programs
- Standard programs => standard thinking
Need comparison groups

- Can’t do research without it
- Requires some degree of control
Need to compare what’s there

- Take advantage of natural variation
- Use design based research approach
- Measures aligned with programming
So let’s treat and test

- Align measures with programming
- Administer tests
Let’s not wreck the experience

- Norms for OST are different from school
- Different types of evaluative practices
- Programming comes first
Gotta break eggs to make omelet!!

- Everyone’s used to taking tests
- We have good valid outcome measures
- We won’t make progress your way
Gotta have compatible ingredients

- Validity is measuring what you mean to measure
 - Attraction, engagement?
 - Effects of the experience?
 - Capacity to
 - Use resources wisely?
 - Solve problems?
 - Take up future opportunities?
Must measure what’s in the person

- Carries forward to new situations
- Let’s us know if individuals are learning
- Let’s us know if they’ll do more next time
Measure uptake of opportunities

- Focus on choices, preparation, commitments, performance

- See these things in light of conditions

- How are we better preparing people to respond to their opportunities?
NSF MUST HAVE SUMMATIVE DATA!!

- Programs need it
- Congress needs it
- Taxpayers need it!!
NSF needs to know what’s working

- Dynamic, attractive programs that get kids engaged in STEM activities
 - Mobilize communities and partners
- Information that can be used by designers and staff
- Multi-methods and forms of evidence
- Stay open to the unanticipated!
NSF *has* considered all these issues

Examples:

- ACC’s Informal Ed and Outreach (2007)
- NRC Learning Science in Inf. Env. (2009)

Need to follow the lead and act!
Indeed, there is a flexible structure

- NSF encourages diversity of
 - Outcomes ("other")
 - Research and evaluation methods

Show audiences and stakeholders how

- Projects are true to their objectives
- Rigorously across evaluation methods
Thank You
Components of an ITEST STEM Workforce Development Model

- Strand A: Local context and cultural relevance
- Strand B: STEM skills and knowledge
- Strand C: Partnerships
- Strand D: Career pathways
- Strand E: Youth development
- Strand F: Teacher professional development

Technology use and engagement of populations traditionally underrepresented in STEM will be woven into the overall model development work.
Process: Three Sessions

• Session 1 (Wednesday @ 1:00–2:00 PM)
 – Share contributions
 – Begin discussion using guiding questions

• Session 2 (Wednesday @ 2:30-4:00 PM)
 – Continue discussion using guiding questions

• Session 3 (Thursday @ 10:00 AM-11:30)
 – Wrap-up and synthesize discussion
 – Prepare for report out
 – Number off for jigsaw conversations
Today’s Schedule

- 11:00 Keynote: Dale Dougherty
- 11:45 Break/get lunch in foyer
- 12:00 Panel: What is Evidence?
- 1:00 Breakout Strand Sessions
- 2:00 Break
- 2:30 Continue Strand Sessions
- 4:00 Meet with Program Officers
- 5:00 Poster Setup
- 6:00 Working Dinner/Poster Reception

twitter: #itest Virtual event: http://learningtimesevents.org/itest/