Integrating Students' Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
Description
This project is responding to the growing recognition that youth can benefit from a wide range of data literacy skills. Network visualization is a particularly powerful and relevant approach for learners to understand. In a network visualization, people, places, and things are the nodes in a network, displayed as circles. These nodes are connected by lines that represent interactions. Learners can view relationships between nodes and lines in a network using either a dynamic visualization or they can view network data as a table. The two different representations together can help learners explore data in many contexts. This exploration is particularly relevant for data about relationships built on popular social media platforms. Therefore, network visualizations present a unique opportunity to explore data and data literacy in rich social contexts that are of interest for, and relevance to, youth learners. As they explore a range of locally relevant contexts across disciplines, learners will be engaged with core data literacy principles. To accomplish this, the project team will design, implement, and study an instructional unit about network visualization using the open-source Net.Create software tool that this team previously created to support intuitive, collaborative network visualization. As part of a co-design process with teachers, the team will create a curriculum unit that encourages 7th and 8th grade students to engage in core network visualization and key data literacy practices that meet disciplinary standards. The curriculum will integrate students? interests and cultural identities, and those of their communities. For example, network visualizations that may be explored include hobbies and activities they are engaged in as well as aspects of their culture or identity. To help students appreciate network visualization in a robust manner, they will have opportunities to develop, critique, and revise the visualizations they build.
This project will take a synergistic approach in which middle school students use network visualization to learn about themselves and their communities. As the same time, students will also be learning about the underlying network science and data literacy principles that make their exploration possible, and which are central to their experiences with many common technologies. The project addresses three research questions over this three-year study: 1) How can students learn network and data literacy concepts through the creation of network visualizations with their peers? 2) How does exploring their collective identity, through topics of interest to students both individually and as a whole, using network visualization help motivate them to explore data literacy and integrate technology more deeply into their lives and careers? 3) What challenges and opportunities do teachers see in using network visualizations to support teaching data literacy concepts? The project team will engage in iterative co-design with a partner school district to adapt the draft curriculum to be locally relevant and meaningful. The project will also extend the Net.Create tool to support more robust exploration of the data literacy concepts such as data provenance. Data analysis will include pre / post measures of data literacy concepts and criticality, analysis of networks created by learners and computer logs, application of an engagement rubric that measures quality of student engagement with different activities, and interaction analysis of classroom activities to help articulate how learners used the tools to develop understanding of target concepts. The project team will work closely with two teachers in year 1, three teachers in year 2, and five teachers in year 3, while also scaling up the implementation to see how up to 20 additional teachers are subsequently able to implement the curriculum. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.