
An Immersive Environment for Embodied Code 
Robert Twomey 

Johnny Carson Center for Emerging 
Media Arts, University of 

Nebraska-Lincoln 
rtwomey@unl.edu 

Amy Eguchi 
Education Studies, University of 

California San Diego 
a2eguchi@ucsd.edu 

Tommy Sharkey 
Computer Science and Engineering, 
University of California San Diego 

tsharkey@ucsd.edu 

Monica Sweet 
Center for Research on Educational 
Equity, Assessment, and Teaching 
Excellence, University of California 

San Diego 
msweet@ucsd.edu 

Timothy Wood 
Institute for Neural Computation, 
University of California San Diego 

t2wood@ucsd.edu 

Ying Wu 
Institute for Neural Computation, 
University of California San Diego 

ycwu@ucsd.edu 

ABSTRACT 
The increasing sophistication and availability of Augmented and 
Virtual Reality (AR/VR) technologies wield the potential to trans-
form how we teach and learn computational concepts and coding. 
This project develops a platform for creative coding in virtual and 
augmented reality. The Embodied Coding Environment (ECE) is 
a fow-based visual coding system designed to increase physical 
engagement with programming and lower the barrier to entry 
for novice programmers. It is conceptualized as a merged digi-
tal/physical workspace where spatial representation of code, the 
visual outputs of the code, and user interactions and edit histories 
are co-located in a virtual 3D space. 

CCS CONCEPTS 
• Human-centered computing → Human computer interaction 
(HCI); Interactive systems and tools; Human computer interaction 
(HCI); Interaction techniques; • Applied computing → Education; 
Interactive learning environments. 

KEYWORDS 
visual programming languages, extended reality, embodied cogni-
tion, programming tools 
ACM Reference Format: 
Robert Twomey, Tommy Sharkey, Timothy Wood, Amy Eguchi, Monica 
Sweet, and Ying Wu. 2022. An Immersive Environment for Embodied Code. 
In CHI Conference on Human Factors in Computing Systems Extended Ab-
stracts (CHI ’22 Extended Abstracts), April 29–May 05, 2022, New Orleans, LA, 
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3491101. 
3519896 

1 INTRODUCTION AND MOTIVATION 
It has been theorized that learners’ abilities to understand and rea-
son about functions, algorithms, conditionals, and other abstract 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
CHI ’22 Extended Abstracts, April 29–May 05, 2022, New Orleans, LA, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9156-6/22/04. 
https://doi.org/10.1145/3491101.3519896 

computational concepts stem in part from more fundamental sen-
sorimotor and perceptual experiences of the physical world. Our 
own work, for instance, has revealed that computer science (CS) 
educators incorporate a wide range of metaphors grounded in tan-
gible experience into their lessons on computational concepts, such 
as demonstrating sorting algorithms with a deck of cards or the 
transfer of information between functions by throwing paper air-
planes [10]. Our long-term research goals center on the question 
of how a coding platform that supports these types of embodied 
conceptual phenomena can make learning to code a more intuitive 
process, and how this alternative modality of embodied experience 
may boost engagement with and understanding of code for some 
beginning coders. 

This line of work continues a decades-long efort to incorporate 
bodily knowledge derived from sensorimotor experience into cod-
ing logic. In the 1970’s, Papert’s LOGO system [6] allowed children 
to learn foundational computational concepts by programming 
basic movements of a “turtle” in real space. In related work, a re-
confgurable system known as Boxer [1] represented code objects 
in the form of 2D boxes that could be arranged and manipulated on 
the screen, allowing users to make use of space and relationships 
in computationally meaningful ways. 

Today, visual programming languages (VPLs) are broken into 
roughly two groups: node-/fow-based environments (e.g. Pure-
Data, Max/MSP, cables.gl, Unreal Blueprints, Matlab, and oth-
ers), and block-based environments (e.g. Scratch, Blockly, Alice). 
These languages continue to be structured to leverage visuo-spatial 
metaphors towards making learning to code easier. 

The Embodied Coding Environment (ECE) presented here difers 
from these existing 2D platforms – and even existing 3D platforms 
such as Facebook Horizon (connecting virtual objects to code) and 
MITs Reality Editor (connecting physical objects to code) [2] – by 
allowing users to leverage not only rich spatial metaphors, but 
also kinesthetic and proprioceptive ones to ground abstract com-
putational concepts in more familiar sensorimotor experiences. 
For instance, if a user conceptualizes loops as having a circular 
structure, it is possible in the ECE to create and save gestures that 
match this conceptualization, and to annotate relevant sections 
of code with these gestural representations. Similarly, if the user 
conceptualizes the control fow of a computer program as forward 
progress through space, they can arrange nodes, connectors, and 

https://doi.org/10.1145/3491101.3519896
https://doi.org/10.1145/3491101.3519896
https://doi.org/10.1145/3491101.3519896
https://cables.gl
mailto:ycwu@ucsd.edu
mailto:t2wood@ucsd.edu
mailto:msweet@ucsd.edu
mailto:tsharkey@ucsd.edu
mailto:a2eguchi@ucsd.edu
mailto:rtwomey@unl.edu


CHI ’22 Extended Abstracts, April 29–May 05, 2022, New Orleans, LA, USA Robert Twomey et al. 

Figure 1: System features (clockwise from top left): Loading a virtual problem space; the Annotation System showing both 
drawings and gestures; the 3D selection tool; the programming interface and search box. 

other elements of code to match this mental model. In engaging 
these dimensions of somatic experience, our project relates to more 
explicitly tangible and embodied interfaces: embodied performance 
environments such as Timothy Wood’s SEER [9], and hardware and 
object-based tangible code interfaces such as littleBits and reacTable 
[4]. 

Moreover, unlike other coding platforms, the ECE allows users 
to exploit features of their virtual and (eventually) physical envi-
ronment in order to contextualize their code in meaningful ways. 
For instance, variables can be organized on a bookshelf or table – 
in keeping with the idea that CS students conceptualize elements of 
code as tangible objects [5]. Or in the case of programming mobile 
robots, code and annotations related to the desired actions of the 
robot can be anchored to the locations where those actions are ex-
pected to take place. Utilizing space in these ways to make aspects 
of code easier to understand may engage some of the same senso-
rimotor processes thought to make memory palaces an efective 
memorization technique [7]. 

Below, we describe our prototype platform, its design, implemen-
tation, and key features that serve as contributions, including 1) a 
novel visual-spatial XR representation of coding allowing immer-
sion in the problem and design spaces, 2) whiteboarding/annotation 

tools situated in a shared environment with code activities, and 3) 
gesture and movement paths for the direct specifcation of program 
instrumentation and data. We also detail our future plans for this 
project and research studies exploring its potential impact on high 
school computer science education, for both students and teach-
ers. Ultimately, this project explores new roles for visual-spatial 
representations of code and harnesses the afordances of embodied 
interfaces to scafold coding and computational thinking. 

2 EMBODIED CODING ENVIRONMENT 
The Embodied Coding Environment (ECE) currently runs on the 
Oculus Quest 2 and allows the user to write code both through the 
connection of nodes and via custom python (IronPython interface 
to UnityEngine’s C# runtime environment) scripting. While the 
move to 3D (from 2D programming environments) can be justifed 
simply by afording more space to display code, the foundational 
principle behind the ECE is focused on creating a programming 
environment that utilizes the inherent and embodied afordances 
of being a body in space. 



An Immersive Environment for Embodied Code CHI ’22 Extended Abstracts, April 29–May 05, 2022, New Orleans, LA, USA 

2.1 Using the Embodied Coding Environment 
When running the Embodied Coding Environment (ECE), users 
are presented with either an empty virtual workspace or the 
site/environment of their problem space (which currently must 
be programmatically generated). Consider a user who is confronted 
with the task of programming a drone that must navigate through 
a forest. When entering the ECE, the user will frst load a forest 
environment and a drone (see Fig. 1) – which can be considered a 
representation of the problem space. 

The user then walks around the forest, making mental notes of 
where the user wants the drone to fy to, and how many trees are 
in the way. The control algorithm may seem deceptively simple: fy 
straight toward the target, veering left/right to avoid trees before 
returning to the straight-line path. But as they begin to role-play 
this path in the problem space, they come to the realization that 
they themselves do not adopt this approach when walking through 
a forest - they often walk far of course to reach a space clear of 
trees, allowing them to speed up and reach their destination more 
quickly overall, despite costing them more time initially. 

With this revelation, the user begins drawing arrows between 
the trees and making a diagram of their algorithm. They rely on 
the ECE Annotation System to produce multimedia notes using 
drawings, audio, and even gestures in space (see Fig. 1). Some of 
their annotations are next to the drone, describing power to the 
motors, some annotations are next to trees and point to the spaces 
between them. 

As the design solidifes, the user begins programming the frst 
part of the algorithm - getting the drone to fy forward. They use 
their controller to open a search box, spawning pre-made ‘nodes,’ 
or code functions that modify inputs and produce outputs (see 
Fig. 1). The user clicks on these inputs and outputs to connect 
them with a virtual string (this is like fow-based programming 
mentioned previously). They want to add a custom function to help 
synchronize the drone’s motors, so they create a new node, press 
a button to edit its code, and implement their own python script 
with inputs and outputs. They connect it to the other nodes and 
can reuse it by searching for it with the search bar from earlier. 

The user spatially separates the code into logical groupings by 
simply grabbing nodes and moving them into position. They then 
use the 3D selection tool (see Fig. 1) to select the nodes in the frst 
step of their algorithm. Once selected, the ECE allows them to attach 
the nodes to the annotations made earlier. The user hides/collapses 
the nodes into their drawing and description of the frst part of 
their algorithm and moves onto the subsequent portions of the 
algorithm. 

Eventually the user comes across a difcult behavior - making the 
drone bank or tilt slightly when turning. This behavior is complex 
to program in a traditional environment, involving fne tuning that 
may prove time consuming. It is, however, easy to demonstrate 
with the hand and surprisingly easy to translate this embodied 
motion into code for the drone. The user begins recording a gesture 
annotation and performs the banking behavior (see Fig. 1). They 
select and use this gesture as input into the custom node they made 
earlier. In this way, they specify the drone behavior through their 
movement and use that specifcation directly as data in their code. 

As shown, the ECE allows the user to think through their prob-
lem space, design in-situ in that problem space, and then cluster 
their code in space and fold it into the representation of their design. 
As they hover over annotations representing elements of their de-
sign, they can quickly look through the code tied to that annotation, 
tapping into their memory of the spatial layout of elements. Their 
annotations act as code comments in this way, and as usable input 
into code in the case of the banking problem. 

2.2 Key Features 
The Embodied Coding Environment is comprised of a set of tools: 
annotation tools that include both drawing and recording behaviors, 
smart selection tools, a smart search/command bar, a text editor 
with syntax highlighting, simple grouping and movement tools for 
organizing elements in space, and the ability to save projects to the 
cloud. Of these features, three are critical to the advancement of 
an embodied coding environment: immersion in the problem space, 
situated whiteboard/annotations for both designing and structuring 
code, and user movement/gestures as data and program input. 

2.2.1 Immersion in Problem Space. Programmers must contend 
with three distinct spaces - the problem space (where the problem 
exists), the design space (where a solution is planned/designed), 
and the programming space (where code is created in line with 
the design). Programming environments typically focus on the 
programming space to the exclusion of the other spaces. The ECE 
experiments with an alternative where all three spaces co-exist. 
In the drone-in-a-forest example, programmers are immersed in a 
virtual forest with a drone (problem space); they can draw anywhere 
(design space); and place code anywhere (programming space). 
Many complex relationships arise by contextualizing each space 
within the others, but two of note are: 

• The user’s code is contextualized - that is, rather than or-
ganizing code in directories, code can be organized by its 
relative position in space. Code to control the drone’s motors 
can be tied to the drone motors; code to identify trees ap-
pears by the trees; etc. ECE changes the metaphors we use to 
organize our code. Rather than placing code in a centralized 
location, a user can distribute it throughout the problem 
space. 

• Users can interact with their environment - situating them-
selves in the problem to glean insight that might be locked 
away in the embodied experience of the problem space. This 
is exemplifed in section 2.1 when the user realizes a better 
algorithm for avoiding trees by noticing their own move-
ments in their problem space - learning from their embodied 
role-playing experience facilitated by the ECE. 

2.2.2 Annotation System. To aford user-expression, the Embod-
ied Coding platform allows for an abstract Annotation System 
where ‘annotations’ take the form of 3D drawn lines, hand gestures, 
spoken comments, quick 3D modeling, and more. Free form dia-
gramming or whiteboarding plays a key role in understanding and 
breaking down problems as well as working through the design 
of algorithms to solve those problems. In its most basic form, the 
Annotation System supports these processes with diverse modes of 
expression - focusing on letting users express their ideas through 



CHI ’22 Extended Abstracts, April 29–May 05, 2022, New Orleans, LA, USA 

simple drawings, through movements, through 3D objects, voice, or 
whichever means is most natural to the user. The goal is to let them 
manifest their ideas into the world in whatever way they choose, 
not to enforce a proper method (like drawing fowcharts). 

Importantly, annotations aren’t passive in the ECE and can play 
two diferent active roles in the system. First, annotations serve 
to organize code. Rather than using fles and directories, code col-
lapses into annotations (like collapsing a function into a function 
header comment). The user then remembers what code is where 
both by recognition of the annotation and by the juxtaposition of 
the content with its surroundings. The second role that annotations 
play is as code input. The code might use the position, path, rota-
tion, timestamps, duration, velocity, audio, or any combination of 
properties of the annotation. This information can be used as a di-
rect map - controlling the position of a 3D model with the positions 
and timestamps from an annotation, or indirectly - using positional 
changes to ease between two colors. In this way, a programmer can 
directly specify behavior that may be time consuming to program. 

2.2.3 User Movement and Direct Specification. Our system facili-
tates direct specifcation, which builds on direct manipulation [8] 
from historic programming (e.g. SketchPad) and CAD (e.g. Auto-
CAD) interfaces, and further harnesses the embodied afordances 
of contemporary immersive platforms. In our platform, we can 
use spatial signals from hand and controller-tracking to directly 
select locations in space, to directly specify movements, and control 
signals and other parameters through gestural time series input. 
Controller and hand movements can be recorded and visualized as 
annotation data within the ECE. These data can be linked as input 
to programming nodes and used for a variety of purposes. In the 
drone-in-a-forest example, the user specifes the subtle behavior 
of the drone banking into its turns. Movement data can also be 
input to programming nodes in real time, allowing the user to build 
an interactive instrument where the user’s direct specifcation of 
movement controls a computational process with similarities to the 
visual art focused 2D platform Dynamic Brushes [3]. 

3 EVALUATION AND FUTURE WORK 
The Embodied Coding Environment (ECE) currently exists as a pro-
totype for exploration into allowing space and the body to play a 
more pivotal role in the programming process. We plan to conduct a 
series of studies to learn more about how students use the ECE, with 
goals of improving the platform, advancing our understanding of 
how individuals teach and learn computer science, and improving 
students’ interest, engagement, skills, and comprehension of com-
puter science. Our studies will employ mixed methods, including 
both quantitative and qualitative studies exploring individual fea-
tures as well as the system as a whole. For example, we are planning 
a quantitative study for each of the described features comparing 
how adding/removing that feature impacts the user’s understand-
ing of the problem, design of a solution, and implementation of that 
solution, along with a qualitative analysis comparing how the use 
of the ECE changes student’s approach to programming. 

At the same time, the ECE is constantly evolving and expand-
ing. Future and current work includes the move to Augmented 
Reality and the real-time control of physical robots rather than 
virtual ones. Additionally, moving collaborative programming (like 

Robert Twomey et al. 

pair-programming) into a virtual collaboration environment would 
allow collaborative coding to move past physically collocated dyads 
(constrained by the number of people that ft around a computer 
screen). This would allow for new ways to distribute sub-tasks, 
visualize diferences (spatial difs), and integrate multiple branches 
of code development. Lastly, to further the physicality of code, we 
want to expand the system to allow for physics-based representa-
tions of code - where functions behave more like gears in a larger 
mechanism. 

ACKNOWLEDGMENTS 
This work is supported by the National Science Foundation under 
Grant #2017042. 

REFERENCES 
[1] Andrea A. diSessa and Harold Abelson. 1986. Boxer: a reconstructible compu-

tational medium. Commun. ACM 29, 9 (September 1986), 859–868. DOI:https: 
//doi.org/10.1145/6592.6595 

[2] Valentin Markus Josef Heun. 2017. The reality editor: an open and universal tool 
for understanding and controlling the physical world. PhD diss. Massachusetts 
Institute of Technology. Retrieved January 13, 2022 from https://dspace.mit.edu/ 
handle/1721.1/114072 

[3] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending 
Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings 
of the 2018 CHI Conference on Human Factors in Computing Systems, Association 
for Computing Machinery, New York, NY, USA, 1–13. Retrieved January 13, 2022 
from https://doi.org/10.1145/3173574.3174164 

[4] Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, and Ross Bencina. 2005. The 
reacTable. In Proceedings of the International Computer Music Conference (ICMC). 

[5] Andrew Manches, Peter E. McKenna, Gnanathusharan Rajendran, and Judy 
Robertson. 2020. Identifying embodied metaphors for computing education. Com-
put. Hum. Behav. 105, (April 2020), 105859. DOI:https://doi.org/10.1016/j.chb.2018. 
12.037 

[6] Seymour Papert. 1980. Mindstorms: children, computers, and powerful ideas. Basic 
Books, New York. 

[7] Anco Peeters and Miguel Segundo-Ortin. 2019. Misplacing memories? An en-
active approach to the virtual memory palace. Conscious. Cogn. 76, (November 
2019), 102834. DOI:https://doi.org/10.1016/j.concog.2019.102834 

[8] Ben Shneiderman. 1997. Direct manipulation for comprehensible, predictable 
and controllable user interfaces. In Proceedings of the 2nd international conference 
on Intelligent user interfaces, 33–39. 

[9] Timothy R. Wood. 2021. Embodied Worldmaking. PhD diss. UC Santa Barbara. 
Retrieved January 13, 2022 from https://escholarship.org/uc/item/66h114tg 

[10] Ying Wu, Tommy Sharkey, Robert Twomey, Timothy Wood, Amy Eguchi, and 
Monica Sweet. Need Finding for an Embodied Coding Platform: Educators’ Prac-
tices and Perspectives. In 14th International Conference on Computer Supported 
Education (CSEDU). 

https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://dspace.mit.edu/handle/1721.1/114072
https://dspace.mit.edu/handle/1721.1/114072
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1016/j.chb.2018.12.037
https://doi.org/10.1016/j.chb.2018.12.037
https://doi.org/10.1016/j.concog.2019.102834
https://escholarship.org/uc/item/66h114tg

	Abstract
	1 INTRODUCTION AND MOTIVATION
	2 EMBODIED CODING ENVIRONMENT
	2.1 Using the Embodied Coding Environment
	2.2 Key Features

	3 EVALUATION AND FUTURE WORK
	Acknowledgments
	References



