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The term “computational thinking” has been at the center of recent efforts to describe and 
promote new ways of thinking in an increasingly digital age. But the term remains elusive to 
those outside the field of computer science. In this paper, we aim to describe what computational 
thinking looks like among youth from a range of backgrounds, as they engage in innovative uses 
of technology. The term computational thinking (CT) was coined by Jeannette Wing (2006) to 
describe a set of thinking patterns that involve systematically and efficiently processing 
information and tasks. CT involves defining, understanding, and solving problems; reasoning at 
multiple levels of abstraction; understanding and applying automation; and understanding the 
dimensions of scale. While the concept has emerged from computer science,  students can 
engage in CT with or without a computer. CT draws on a rich legacy of studies of human 
cognition, such as systems thinking, problem solving, and design thinking. 

Computational thinking is an evolving construct that is intended to capture and define 
foundational ways of thinking that are increasingly relevant in the digital age. Many believe that 
today’s youth are developing new patterns of thinking through their long term, intensive use of 
technology in and out of school (Jukes and Dosaj, 2004, Ryberg, 2005; Sørensen, Danielsen & 
Nielsen, 2006; Yoon, 2007; Ryberg and Dirckinck-Holmfeld, 2008; Sørensen, 2010). In this 
paper, we examine the learning potential of CT through concrete examples—in and out of 
school—of youth engaged in computationally-rich programs in which they play the roles of 
designers, creators and innovators.  

If computational thinking is, indeed, a key to developing the capacity to discover, create and 
innovate, then teachers and other youth leaders need to understand computational thinking, how 
it connects to their curriculum, and how to recognize, nurture and assess these talents. To that 
end, this paper addresses two essential two questions:  

•       What does computational thinking for youth look like in practice?  

•       How can educators support growth in computational thinking?  

This effort is intended to complement The National Academies “Computational Thinking for 
Everyone” workshop series and the Computational Thinking Thought Leaders project currently 



being carried out by the Computer Science Teachers Association (CSTA) and the International 
Society for Technology in Education (ISTE). We are confident that synergy will emerge from 
our respective efforts, helping to chart a path forward. 

What does computational thinking for youth look like in practice? 
 
In this paper, we focus on how computational thinking ideas have value for pre-college youth, in 
and out of school. Distilling the rich and complex legacy of formal computational thinking, we 
base our understanding of computational thinking for youth as an approach to framing problems 
or issues that relies on two main concepts: abstraction and automation. As described by Wing, 
abstraction is about a “separation of concerns. It is choosing an appropriate representation for a 
problem or modeling the relevant aspects of a problem to make it tractable” (2006) and 
automation allows one to “tackle problems of scale” (2009). 
 
Phrased more tangibly, Dave Moursund (no date) suggests that “the underlying idea in 
computational thinking is developing models and simulations of problems that one is trying to 
study and solve.” In addition to the model-based approach promoted by Moursund, we will 
consider computational thinking in two other domains: with robotic systems and game design 
and development. We see examples from these three domains as important, as much of the 
innovative work in computing being done with middle- and high-school students draws from 
these three areas. The boundaries defining game design, simulations or models, and robotics are 
fluid, intended to provide a thought framework. Since the three domains have intricate 
connections with one another, we feel that there is a synergy arising from considering each in 
building a more general understanding of CT for youth.    
 

Modeling and simulation 
Modeling and simulation environments are typified by a system of interacting components that 
together create a larger whole. Users may interact with the system simply by allowing the 
simulation to unfold and observing it. Deeper interactions involve adjusting parameters, or in 
some cases, reprogramming the behaviors of particular agents within the simulation. In this latter 
case—where the user takes charge of determining the behavior of an agent or agents within the 
simulation—the example crosses over into the domains of robots and/or games.  

In a Project GUTS (Growing up Thinking Scientifically) middle school program, 
students actively engage in computational thinking through the modeling and 
simulation of real-world issues within their communities. In Project GUTS clubs, 
students investigate local issues within their community. As part of this work they 
create agent-based models in StarLogo TNG to explore the underlying dynamics 
of the issues and to test potential mitigation strategies virtually. For example, in 
an investigation of epidemics, club members collected data on the physical layout 
and student circulation within their schools, and conducted background research 
on various contagious diseases.  Using this data, they customized a computer 
model of a simple contagion to reflect local conditions and match a chosen 
virulent. Their computer models were used as experimental test beds with which 
they tested strategies to mitigate potential epidemics within their school 
community.   



Game design and development 
Building a computer game is a complex task, requiring not only programming, but also the 
ability to think at multiple levels of abstraction and in terms of scale. More broadly, Salen (2007) 
says that “knowing how to put together a successful game involves system-based thinking, 
iterative critical problem solving, art and aesthetics, writing and storytelling, interactive design, 
game logic and rules, and programming skills” (p. 305). This challenge can be highly appealing 
to youth. 

In the iGame after school program, middle school youth engage in computational 
thinking by programming original computer games using Storytelling Alice. In 
iGame classes, students engage in relevant CT concepts such as algorithmic 
thinking, as they solve problems related to game programming using conditionals, 
iteration, and sequential execution. Students must also think  abstractly to create 
a model of their world, and set up variables to define the state of the world. For 
example, in the game “Are you Smarter than a Penguin?” students simulate a 
game show by programming a series of questions, where the course of the game is 
determined by the player’s responses..   

Robots and robotic systems 
In the case of robotics, students are most often concerned with determining the behavior of a 
single agent in the system that is equipped with sensors and actuators that enable it to interact 
with or respond to its immediate environment. These systems may be mobile robots, or may 
consist of  other actuators, such as flashing lights or sound synthesizers that interact directly with 
people. Student programmers need to think about how the robotic agent will interact with its 
world, based on factors such as its sensor values and the effects of its actuators. As they do this, 
the student makes choices of how their programming will connect these things together to 
achieve the desired results.  
 

In iCODE (Internet Community of Design Engineers) project, middle and high 
school youth complete a variety of microcontroller-based projects. They meet 
once per week in an after-school program, and for two weeks during the 
subsequent summer. With the guidance of a program leader, iCODE participants 
work from a set of online project guides, which present design ideas and project 
plans. Students begin with a simple project consisting of programmable flashing 
lamps, and progress to a musical memory game, to finally a fully autonomous 
(self-controlled) robot.  Students present their work at an informal “Botfest” 
design show and a separate, Sumo robot contest event (Martin et al., in press).    

The examples cited are intended to illustrate how activities within each of the three domains 
promotes computational thinking. As stated previously, there is a degree of overlap among the 
domains. For example, within a game design project, students create a model of a real or make 
believe world, typically with many agents on-screen, just as in a simulation. Student game 
designers are also directly involved in programming the behaviors of these agents—just as they 
would program the individual robot—with the intention of achieving a game narrative with 
multiple possible outcomes, each contingent on a player’s actions.  



Note that there are also many examples of explicitly designed “cross-over” applications that 
consciously draw from more than one domain as they support development in computational 
thinking. For example, Squire (2004) has shown how the simulation/game Civilization promotes 
historical understanding. After playing the game, students then use the game’s modification tools 
to create their own game scenarios. Likewise, the Community Science Investigators (CSI) 
program engages youth in “augmented reality” games that provide an overlay of an 
environmental mystery scenario within their neighborhood. As the players seek clues to solve the 
mystery, they are engaging in simulated science within a game context. Later in the CSI 
program, participating students build on their experience with simulations to design their own 
games.  

How can we support growth in computational thinking?    
Based on our work with several youth projects across the US, we propose a three-part framework 
of how youth develop CT skills. Implicit in the previous discussion is the premise that growth in 
computational thinking often begins with using rich computational environments. Over time we 
continue to use the environments of course, but also begin to modify them with increasing levels 
of sophistication. As youth gain skills and confidence, they create computational models based 
on original designs. Each “stage” is essentially a superset of what has come before.  

 

 

USE: During this phase, youth learn how to use the technology, including the interface and tools, 
and the kinds of products that others have made. This may involve performing scripted tutorial 



operations and exploring software. Work at this stage builds the foundation for higher levels of 
engagement with CT.   

MODIFY: As comfort is gained in using the tools, youth begin to experiment by modifying 
existing programs or projects, making increasingly original contributions. During this phase, 
students begin to understand how they can control underlying mechanisms to bring about 
different results, a skill that they will later use in making original creations.   

CREATE: In this phase, youth apply their growing computational thinking skills to create a 
substantially original product. This work will show increasing levels of abstraction and 
automation than may have been present in an earlier exploratory experience. Implicit in the 
development, of course, is that the creation will be used and modified over time.  

While we are advocating use of this “use-modify-create” framework to describe growth in CT, it 
is not intended to depict three distinct phases. In practice, these changes are as much a 
metamorphosis as a clean transition. Just as a “tweenage” youth is moving from childhood to 
adolescence, there are no clean break points among using, modifying, and creating. When 
learners are modifying a project, they will still be using it. Likewise, creations almost always 
build on a student’s previous experiences using and modifying project resources.   

Over time, students will traverse through these phases recursively, looping back through other 
phases as they build their capacity for innovative creation over time. Some learners will progress 
sequentially through mastery of each stage, while others might dive right in and modify an 
example before having an extensive “use” experience.  Just as children can learn to create music 
with an instrument before learning music composition, there is no one pathway to developing 
computational thinking. Being immersed in a rich learning environment is the key, supported by 
appropriate tools and a collaborative culture. 

To that end, we argue that learning spaces that enable students to interact thoughtfully with well-
designed modeling, robotic design, or game programming environments can offer a leap forward 
in computational thinking in comparison to work done with traditional media, such as a textbook. 
The real value for CT comes, however, when students take ownership of a project. They can then 
investigate the computational representation (including its underlying assumptions), adjust these 
representations or assumptions, and see what the impact might be. With even a modicum of 
experience modifying existing projects, learners have a stronger basis for building their own. A 
closed simulation is a latter-day version of the black box technologies that Dewey railed against 
nearly a century ago as the industrial era gave people automated machines, closing off avenues to 
see and feel how things really worked. Dewey’s concern is just as valid today, as considerable 
computational power is housed in sealed boxes, some small enough to fit in our pockets. To 
realize the full benefit of computational thinking, students need a level of ownership and 
interactivity with the models underlying the abstractions and automation.  

To illustrate this growth in capacity, we offer two examples of how middle school students might 
engage in CT in each phase of the framework. The first example is from the previously-
mentioned iGame after school program where students learn to create digital games. First, they 
learn how to use the Storytelling Alice programming environment through interactive tutorials, 
and by playing games made by peers. The goal is to introduce the software interface, and the 



kinds of games they might make. In the Modify phase, students adapt and expand on existing 
programs through a series of self-directed “challenges” that deepen understanding of the 
mechanisms used to program an original game. The challenges get increasingly difficult with 
more complex and abstract concepts, and with fewer and fewer instructions. Along the way, 
participants learn different aspects of CT including key programming concepts such as variables 
and conditionals. In the Create phase, students program original games, with varying degrees of 
complexity. There is a continuum of sophistication within this phase, with some engaging in 
high-level abstraction (creating complex new methods or embedded loops) and others creating 
more linear code. For instance, many apply the concept of conditionals using simple If/Else 
commands, while others use nested If/Else commands, suggesting a high level of mastery of 
these concepts. Through iGame, this involves not only creating, but also analyzing, testing, and 
revising a variety of games made students and their peers. 
 
In a second example, EcoScienceWorks is a project for middle school science classes that begins 
with packaged environmental simulations (Allan, et al, in press). During the Use phase of the 
project, students learn the basics of software interface as they discover important features of the 
simulated habitat and perform directed experiments. For instance, the microscope tool can hover 
over an icon, enabling students to discover an organisms’s “gut contents” as they work out the 
habitat’s food web. In the eutrophication lab students discover the impact of different levels of 
phosphorus within a lake ecosystem on population sizes for algae, zooplankton and trout, and 
uncover an explanation for the decline in trout population by measuring the lake’s dissolved 
oxygen content. This “use” phase of the project is rich in the core CT skill of abstraction, 
developing students’ understanding of concepts such as the control of variables, replication of 
experiments and data analysis. In order to increase student interest and understanding of the 
underlying design of computer models, a separate “Program a Bunny” challenge lab comes next. 
A series of challenges in StarLogo TNG-like CodeBlock programming are presented to students. 
In this Modify phase of the project students learn how to use conditional commands, 
randomization and recursion to program a single bunny to forage for carrots in a field. The 
challenges culminate in a competition between a bunny with student-created code and its pre-
programmed opponent.   

In these examples, learners progress from using to modifying and eventually to creating, with 
each growth increment contingent on what has gone before. This development depends on both 
an active student and a conducive learning environment.  As noted by the National Academies of 
Science (2010) report on computational thinking, the full realization of the affordances provided 
by a computational thinking environment depends on the education, training, and experience of 
the user. With this in mind, we turn to consideration of the learning spaces—in school and out—
that nurture budding computational thinkers.   

Learning CT in School and Out  
Learning environments such as the ones described here offer many compelling advantages, but 
they also pose some real challenges to implementation in many school settings. Consequently, as 
our working group explored CT, we found our richest examples occurring in out-of-school 
(OST) environments. This is likely due to a confluence of factors that typify many school 
environments, including:  



•       Balancing curricular demands;  
•       Building teacher capacity;  
•       Ensuring infrastructure access.  

These inter-related challenges have constrained many previous educational innovations, and CT 
is likely no different. Our comments that follow describe some of the changes we feel are needed 
for CT to flourish in formal K-12 school environments and in the growing variety of informal 
learning opportunities available to youth. Where we raise concerns, they are meant to provide a 
vision of alternatives, fully recognizing that there are examples of successful practice that can 
guide our collective efforts.   

Like others (Henderson, 2009; Lu & Fletcher, 2009), we advocate for constructive engagement 
during the regular school day with technology when this advances educational goals. The 
National Council of Mathematics (1995) has campaigned for years on behalf of students being 
equipped to do different mathematics, not just the same mathematics with technology. The key is 
in noting how the learning potential is enhanced through the creative interplay of technology and 
the students. Creative use of technology facilitates a qualitatively different learning experience.  
The same premise advanced by NCTM holds for any discipline. As we have illustrated in this 
paper, computational thinking involves much more than just adding computers to an existing 
program. A core operating principle of computational thinking is that learners need opportunities 
for thoughtful, reflective engagement with the phenomena represented.  

To draw a simple contrast, virtually every middle school student “knows” from their textbook 
and common knowledge that trees help mitigate pollution. Students in an after-school program in 
Missouri have a chance to go much further, using CITYgreen modeling tools to map the trees in 
their school yard and record relevant data on species, health, growing conditions, and the like. 
With this abstraction of their schoolyard created in the form of maps and data tables, automated 
models calculate the benefits of the trees in terms of pollution removal and runoff mitigation. 
These students can model alternative growth scenarios as they either “plant” new trees in the 
model, let the existing trees continue to grow, or remove the trees for expanded parking. Re-
running the model leverages the power of automation to quickly adjust the underlying 
parameters and see what the impacts are.   

Computational thinking projects like these support an iterative cycle that enables an increasing 
sense of agency, where learners are empowered to imagine, create, play, share, and reflect on 
what they are learning (Resnick, 2007). As this iterative cycle progresses, it is important to 
maintain a level of challenge that supports growth. As Repenning (2008) notes, students can 
maintain their sense of cognitive flow (Csikszentmihalyi, 1990) as they progress iteratively 
through a series of projects. In this work, a student tackles progressively harder challenges as her 
skills and capacities increase. What was once “too hard” and anxiety-inducing becomes possible 
with appropriate, incrementally challenging experiences. Conversely, Repenning argues, 
boredom will set in if challenges don’t keep pace with growing skills. In fact, most students 
relish this challenge in their out-of-school lives, seeking out opportunities to use technology in 
ways that help them to grow and to demonstrate increased mastery. As Seymour Papert (1998) 
noted, most young people willingly pursue “hard fun.” This process of increasing challenge and 
complexity—implicitly suggesting engagement with a longer-term project—is not easily 
compatible with a curriculum packed with many topics. Curricular flexibility that allows for deep 



exploration is part of the culture change needed for computational thinking to take root in 
schools.  

Looking at issues relating to teacher capacity, enabling CT in schools requires teachers to have a 
set of skills that are not currently taught in most teacher education programs.  Most simply, 
teachers need to be computational thinkers themselves in order to teach it effectively.  Thus, 
providing in-service training is needed but fraught with challenges. Research has demonstrated 
the challenges of simultaneously asking teachers to change their pedagogy, increase their content 
knowledge to support richer inquiry, and embed advanced technologies in their professional 
practice (Feldman, Konold, and Coulter, 2000).  

Making this change in the context of the numerous demands of regular teaching assignments 
makes implementation of CT in schools on a wide scale a daunting task. In the tree investigation 
just cited, any teacher could transmit and test whether students could repeat the proposition that 
trees help mitigate pollution. However, leading a CITYgreen investigation requires integration of 
field and classroom study, as well as the ability to support students in the use of specialized 
equipment for measurement, species identification, and data recording. As the project progresses, 
technology skills in the use of the underlying ArcView GIS software and CITYgreen extension 
are required, as is the capacity to support students in thinking about the data embedded in the 
results and in posing “what if?” questions. Emerging work in “technological pedagogic content 
knowledge” or TPACK (Koehler and Mishra, 2008) provides useful direction, but leading a rich 
learning environment informed by computational thinking requires a particular skill set that 
requires more than a single teacher workshop can provide. With this in mind, creating a path for 
teacher professional development in CT is a challenge that will need to be addressed.  

Establishing technological infrastructure and leveraging it for rich learning experiences is a long-
term process. Many schools have established computer labs and/or purchased laptop carts, but 
use of these poses a logistical challenge for teachers, who must plan use well in advance. 
Fortunately, new program models are emerging with more ubiquitous access, such as the schools 
with one-to-one computing initiatives where each student has a laptop for personal use, or where 
youth have access to handheld computers. In these situations, emergent investigations and more 
casual use of technology can flourish. Lessons learned from these experiences will no doubt be 
invaluable in guiding CT efforts as access becomes less of an issue.  

One promising example of school-day implementation is the EcoScienceWorks program 
described earlier that leverages Maine’s one-to-one laptop initiative to engage students with 
environmental simulations. The success of the project has been partly a result of addressing some 
of the challenges in introducing computational thinking into the classroom head on. For instance, 
because CT is not evaluated by standardized testing, it is difficult in the current educational 
climate for teachers to allocate time to teach CT as a stand-alone unit. The EcoScienceWorks 
staff addressed this limitation by designing a CT-rich, simulation-based ecology curriculum to 
replace the existing curriculum that focused on content transfer. In this way, required ecology 
concepts could be covered in much greater depth, and computational thinking skills fostered 
through the use and understanding of models.  

While this work offers a promising example, its success required a comprehensive approach to 
reform. Infrastructure was provided by the state’s laptop initiative, a partnership with the school 



district supported curriculum reform, and intensive support was provided by the project staff in 
the form of professional development and ongoing assistance. The key lesson here is that CT 
integrated into the school day curriculum can work with a systemic, strategic approach.   

Aside from EcoScienceWorks, most of the examples in this paper are drawn from out of school 
time (OST) environments. With few curricular constraints, the capacity to hire staff with the 
requisite technology skills, and the ability to dedicate the necessary technological infrastructure 
to the project, it is not surprising that many of the best examples of CT-rich learning occur 
outside of a traditional school day. However, this is not to say that such programs are the ideal 
environment. Instead, the benefits come with trade-offs that must be acknowledged. First, access 
to high quality out-of-school time learning spaces is far from evenly distributed. In particular, 
rural areas rarely have these spaces, which essentially keeps the school as the sole provider of 
educational opportunities. Until broadband access becomes more common in rural areas, virtual 
learning opportunities won’t provide meaningful programs either, further exacerbating the 
opportunity gap faced by rural communities. Inner-city areas also face problems specific to their 
location, such as chronic underfunding, security of expensive hardware, and the safety of youth 
participants. 

Another limitation of OST is that many of the most ambitious programs are funded through 
expensive, time-limited grants from government and foundation sources that serve only a very 
small portion of the potential pool of participants. Continuation past the grant cycle is often 
dependent on next grants, as is replication in other locations. Without grants, continuation 
requires a significant outlay of human and financial resources that favors communities with the 
economic wherewithal to take on such a responsibility. Relying on grants is also problematic in 
that the low funding percentage for most grant competitions makes it uncertain that a next grant 
is in the offing. An additional concern is the fact that grant support to continue a successful 
program is usually much harder to procure than is funding to start something perceived as new or 
innovative.  

Given the equity, access, and continuity limitations associated with specialized out of school 
environments, it is important to identify ways to make CT environments more universally 
accessible through the school environment. In most industrial societies, schools remain the 
primary means of reaching young people. Fundamental changes will be required in the nature of 
schooling, including decisions about who is teaching and what is taught, all built upon a better 
understanding of what and how kids learn. As Papert (2005) notes, we need to “recognize that 
districts have not been transformed; recognize that when districts talk of access it’s inflated; and 
recognize that districts must explore ideas of what should be learned at what age.”  

In short, we recommend a two-pronged approach. We should leverage what is possible in both 
formal and informal learning environments, and use each to inform the other. To that end, in the 
next section we share lessons learned and offer potential next steps for practice and research.  

Conclusions  
In this paper, we have contributed to the dialogue about computational thinking for youth by 
using examples from several projects to describe what CT looks like, and to consider strategies 
for engaging youth in CT, both in and out of school. Given the importance of the work before us, 
we need to deepen our collective understanding to guide our steps forward. We are not yet at the 



point where we have a set of best practices to recommend, but we do hope this paper will move 
us closer to that point by contributing to a national dialogue about effective strategies for 
engaging youth in computational thinking.   

At this point we are confident that existing, broad definitions have utility for understanding CT, 
but there are developmental considerations that need to be addressed. We know from the 
examples cited here and from other projects that youth can engage in abstraction and automation, 
but these processes need to be viewed in light of each child’s age and prior experiences. More 
generally, attempts to list fundamental CT skills, such as those articulated by the National 
Academies of Science (2010), need to be interpreted accordingly. Computer and learning 
scientists need to collaborate with practicing educators in thinking through sets of foundational 
skills and developmental progressions. These can then be considered in light of how they might 
be used to guide computational thinking in different domains. The work here focuses on models 
and simulations, robotics, and game design; these and other application areas will benefit from 
such a framework.  

As a foundation moving forward, the Use-Modify-Create framework offers a helpful model for 
understanding how youth develop CT over time. Its greatest benefit is in illustrating the value of 
engaging youth with progressively more complex tasks and allowing them to take increasing 
ownership of their learning. Traditional assembly line models of education don't foster this depth 
or agency on the part of teachers or students. For schools  to support computational thinking, 
changes are needed in curriculum, accountability, professional development, and infrastructure.   

Recommendations for Next Steps 

Recognizing the challenges educators face, we make several recommendations for next steps in 
practice, and for focused research that will enable us to better understand the issues and 
challenges involved. These recommendations are based on two related premises:   

(1) Teachers and learners need to have and be able to exercise a reasonable degree of agency or 
the capacity to make a difference in their surroundings. Using Emirbayer and Mische’s 
framework (1998), we exercise agency through making practical / evaluative judgments, drawing 
on an iterative cycle of previous experiences and directed toward projected outcomes. For 
example, a Project GUTS student making sense of pollution in her community needs to make a 
series of judgments in her modeling, drawing on previous experience with pollution and with the 
modeling software. In a sense, this element builds on Hawkins’ (1974) notion of “messing 
about” and Papert’s bricolage (1993). The take home message here is that new learning doesn't 
come out of nowhere—prior experiences give the building blocks for concept development, but 
only if they can be accessed and drawn on intelligently. Banking or warehousing models 
premised on “learn it and store it for later” are not sufficient.  

Exercising agency, or actually making a difference in your work, is also guided by a projected 
outcome--knowing what a “win state” or a desirable outcome would be. In the pollution 
example, this might be a model that includes the key variables or parameters; projection in a 
robotic project would likely be a vision of what tasks the robot can perform. In any case, a 
learner with agency can make the judgments needed to realize the projected goal, building on 
iterations of previous experience. A teacher exercising agency reflects on her practice and makes 



changes in the timing and sequence of activities to better realize her projected success—in this 
case, high quality CT-enhanced student investigations.  

(2) Implicit in the idea of agency is the notion of continuous growth and development. In the 
flow model cited previously, challenges need to increase to keep pace with growing skill. A 
learner exercising agency will—over time—exercise more complex judgments and build toward 
more ambitious projections as the iterative pool of experience grows. Framing this issue, Dweck 
(2000) draws a critical distinction between incremental and entity thinking. A teacher or student 
who is exercising agency is growing incrementally as he uses iterations of previous experience 
and refined practical / evaluative decision making. Employing his sense of agency, he can make 
increasingly sophisticated and relevant projections of future courses of action, with the result of 
each projection feeding back into the “pool” of iterations that will inform future efforts. 
Conversely, someone with a low sense of agency who feels that they can’t make much of a 
difference will remain stuck where they are. This entity mindset can be seen in the all-too-
common complaint “I’m just not good at...” Computational thinkers are incremental learners 
with a strong sense of agency. Framed within Self Determination Theory (Deci, 1995), they 
develop competence, autonomy, and relatedness as they build skills, act on them, and build a 
strong learning community that shares ideas freely.   

Curriculum Recommendations 

To integrate computational thinking into the in-school experience, strong examples need to be 
connected to curriculum standards. These efforts will help to create a vision of what is possible 
within a standards-driven curriculum. As noted in the EcoScienceWorks example, it is possible 
to promote computational thinking within a traditional academic study. To move from being able 
to recite propositional phrases like “trees are good for the environment” to using models to build 
understanding of how those trees mitigate pollution is to begin thinking computationally. In 
current school practice, few curriculum units embrace this richness, however, as they provide 
surface-level coverage of a broad range of topics. To move toward an educational culture that 
supports meaningful computational thinking, curriculum models will need to move away from 
covering a plethora of discrete topics and toward engaging learners in more fully integrated, 
intellectually rich clusters of ideas.  

An example of a rich idea cluster is an ecology unit that uses models and simulations to tie 
together a range of formerly discrete topics including adaptations, form and function, biotic-
abiotic interactions, variability, and heredity. As students move from being users of the 
simulation toward making modifications and original creations, their understanding of the core 
concepts and their interdependencies will increase. Most students can recite a definition of 
protective coloration; a more advanced science learner will see how the protective coloration 
favors survival in comparison with species members lacking this coloration. A model in which 
those with the “right” colors survive longer promotes a deeper understanding of adaptations, 
form and function, and evolution. The key point here is that computational thinking doesn’t have 
to come at the expense of rich content. 

This deeper understanding of the underlying concepts is also much more likely to be portable to 
novel situations, both in the robustness of the conceptual networks, and in the general disposition 
toward learning and understanding that this work fosters. As discussed previously, learners’ 



sense of agency and disposition toward continuous growth are fundamental building blocks of 
computational thinking. Curriculum structures that better support this growth and agency need to 
be developed, thereby enabling students to take ownership of their learning and build their 
capacity for self-directed learning over time.  

Accountability Recommendations 

Embedded within most current school curricula is a vision of accountability that all too often 
tests for recitation of many discrete concepts instead of looking for the ability to draw on rich 
networks of understanding. This is driven by a standardized testing model that seeks to promote 
a rigorous and challenging program, but in practice often leads to a fragmented and over-packed 
curriculum (Ravitch, 2010). We believe that CT will be better accommodated within an 
accountability structure premised on fewer, deeper learning goals (e.g. Popham, 2001) and that 
relies on students demonstrating their competence in practical, meaningful applications (e.g. 
Meier, 1995). Models of authentic assessment need to be employed so that teachers can better 
understand the richness and depth of students’ understanding, and be equipped to use this 
information in improving their own practice and in providing constructive feedback to the 
students. 

Teacher Professional Development Recommendations 

Few K-12 educators have benefited from many years of training and acculturation into a 
community of computational thinkers. Thus, greater understanding and awareness of 
computational thinking must dovetail with increased motivation to embed CT-rich learning into 
the curriculum. As much as we support full integration of CT into the curriculum, change in this 
regard cannot be forced on teachers as if they were obstacles to be overcome. Teachers will need 
ongoing support and nurturing to build their own level of comfort with computational thinking as 
they work toward ownership, integrating computational thinking in their classes. A key element 
within this is true integration within the teachers’ worldview and pedagogy.  

If computational thinking is truly foundational, it will need to be integrated into teachers’ core 
identities and allowed to grow over time. Thus, professional development experiences need to be 
supported by ready access to user-friendly software and instructional resources that scaffold 
teachers’ formative efforts. Effective mentoring and support will also be required. Just as the 
Use-Modify-Create framework applies to student efforts, a similar model is essential in 
supporting teachers’ efforts to promote computational thinking. The pedagogic and technical 
challenges they face need to provide just the right level of challenge to avoid boredom or 
frustration.   

Real change takes time, but building support for powerful learning experiences is worth the 
investment.   
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