
Real Time Assessment of Computational Thinking

Kyu Han Koh, Ashok Basawapatna*, Hilarie Nickerson, Alexander Repenning*
Department of Computer Science
University of Colorado Boulder

*AgentSheets Inc.
Boulder, USA

kohkh@colorado.edu, ashok@agentsheets.com, hnickerson@colorado.edu, alex@agentsheets.com

Abstract

This paper suggests a Cyberlearning tool based on a highly
innovative assessment methodology that helps teachers with
computer science education. Currently, there is a strong push to
integrate aspects of programming and coding into the classroom
environment. However, few if any tools exist that enable real-time
formative assessment of in-class programming tasks. The proposed
REACT (Real Time Evaluation and Assessment of Computational
Thinking) system is a first step toward allowing teachers to see which
high-level concepts students have mastered and which ones they are
struggling with as students code in real time. REACT supports and
facilitates the teaching of 21st century computing skills such as
computational thinking [1] in the classroom environment.

Keywords— Computational Thinking; Online Assessment; Real
Time Assessment; Computational Thinking Pattern; Computational
Thinking Pattern Analysis

I. INTRODUCTION
The problem of making programming both accessible and

exciting, which leads to a gap between supply and demand for
computer scientists, has its roots in early schooling and is
international in scope [2]. The Scalable Game Design (SGD)
project [3] has the ambitious goal of revolutionizing computer
science education in public schools through a combination of
game design and science, technology, engineering, and math
(STEM) simulations integrated into the middle-school
curriculum. More than 10,000 students from inner-city, remote
rural, and Native American schools have participated in SGD,
making it one of the US’s largest middle school computer
science education studies. The SGD results shows that the
SGD approach works and broadens participation [3]—even in
some of the toughest, poorest, and most isolated schools in the
nation. Seventy-four percent of male participants and sixty-
four percent of female participants wanted to continue with
similar courses as electives. SGD students create playable
games based on sophisticated concepts that include advanced
mathematics and artificial intelligence.

We designed and implemented a real time online
assessment system for the SGD project teachers. In this paper,
we describe a system entitled REACT (Real Time Evaluation
and Assessment of Computational Thinking) as a first step
toward allowing teachers to see which high-level
computational thinking concepts students have mastered and
which ones they are struggling with as students code in real
time. To this end the REACT system displays which

Computational Thinking Patterns students are currently
implementing, which patterns they have yet to implement, and
the correctness of previously implemented patterns [4].
REACT supports and facilitates the teaching of 21st century
computing skills such as computational thinking [1] in the
classroom environment.

II. BACKGROUND
Real Time assessment systems allow teachers to gain

insight into the level of understanding of individual students
and their class as a whole at any given point in time, offering
more rapid and comprehensive information access for both
teachers and students as compared to typical assessment and
feedback methods. The use of student response systems, often
referred to as clickers, represents one common approach to
gathering such information within the classroom [5]. Typical
clicker systems allow students to individually submit their
answers to multiple choice questions provided by the instructor
for a variety of purposes, including formative assessment and
low-stakes quizzing [6]. Additional uses include managing
interaction, guiding thinking, conducting experiments, and
increasing engagement. More sophisticated systems, such as
InkSurvey [7], allow free-form text and graphical input.
Depending on the purpose, instructors may choose to receive
feedback anonymously from student response systems or to
match responses with individuals. Practices for teaching
computer science using such systems have not differed
appreciably from those employed in other disciplines, though
more attention has perhaps been paid to the potential for real-
time analysis and longitudinal collection of data [8, 9]

A. Teaching and Learning Based on the Zones of Proximal
Flow and Computational Thinking Pattern Analysis
The Zones of Proximal Flow framework [10] describes

what we call a “Project First, just-in-time principles” pedagogy
that we have found to be highly effective. The right-hand side
of Figure 1 shows the Zones of Proximal Flow diagram—a
combination of Csíkszentmihályi’s Flow[11] with Vygotsky’s
Zone of Proximal Development [12] conceptualization. Project
First leads students through the Zone of Proximal Development
(ZPD), which, according to Vygotsky, is an ideal zone for
learning because it pushes learners to their threshold of
knowledge. With the right external support from the teacher,
students can overcome this threshold and learn advanced topics
such as programming efficiently. The resulting framework as
applied to Scalable Game Design includes a curriculum of

increasingly advanced game design activities that range from
basic 1980s arcade games such as Frogger (bottom-left in
Figure 1) to more contemporary games such as The Sims. As
students progress, they encounter sophisticated concepts such
as artificial intelligence (top left in Figure 1).

skills

ch
al

le
ng

es

Flow
ZPD

Zone o
f P

roxim
al

Dev
elo

pmen
t

an
xie

ty

bored
om

principles
first

then
project

A

B

AgentSheet & AgentCubes
projects

games 0%
computational thinking patterns

100%
computational thinking patterns

projec
t fi

rst
,

just-
in-tim

e p
rin

cip
les

Pac Man

Frogger

simulations

Bridge Builder

Forest Fire

City Traffic the Sims

Figure 1. Zone Of Proximal Flow wherein ZPD is located in

between regions of Flow and anxiety

In the Zones of Proximal Flow diagram, the vertical axis
represents the level of the design challenge that would be
intrinsic to a certain game or STEM simulation. The horizontal
axis represents students’ computational thinking skills as
measured by Computational Thinking Pattern Analysis
(CTPA) [4]. CTPA is not looking for constructs such as IF and
LOOP statements at the programming level. It looks instead for
more semantic object interactions, called Computational
Thinking Patterns (CTP) [13], such as collisions and diffusion
at a phenomenalistic [14] level. In the ZPF diagram CTPA
captures a single aggregate value between 0% CTP coverage,
i.e., a student not exposed to any of the patterns in the
inventory, and 100% Computational Thinking Pattern
coverage, i.e., a student exposed to all CTP—presumably
through building a sequence of projects. In summary, CTPA
can assess the state a student is in. Now the question becomes
one of how assessment based on CTPA can be used to
establish a real-time interaction between teacher and students.

III. REAL-TIME STEM PROGRAMMING FORMATIVE
ASSESSMENT TOOLS

We have built the REACT system as an embedded,
formative, real-time graphical assessment tool that quickly
gives teachers insight into student mastery of computational
thinking constructs as they are creating games and simulations.
This ability for formative assessment is the first step towards
objectively determining which learning state students are
engaged in as well as which computational thinking and STEM
topics students understand and/or find challenging.

REACT has three technical objectives as the followings:

• Build a web-based system running on desktop and tablet
computers. Embedded assessment will be employed to serve
as formative assessment tool helping teachers to effectively
support computer science education.

• Communicate students’ progress information to teachers
hierarchically, allowing teachers to quickly get a high level
sense of the entire class but also enabling them to gradually
explore individual student progress.

• Provide teachers the most useful representations of
class/individual progress allowing them to make effective
instructional decisions.

A. REACT vs. Other Online Assessment Tools
The emphasis on computational thinking makes our system

unique in the realm of real-time in-class assessment tools.
There are many attempts at real-time assessment that focus
both on end-user programming tools and computational
science in general. Table 1 lists a subsection of these attempts
comparing our system to two other end-user programming
assessment systems.

Table 1. Comparing the REACT system to other end-user
programming assessment tools

Assessment system name REACT Hairball [15]
& Scrape [16]

Real-Time with active
alarm vs.

Post performance
Real Time Post

Programming vs.
Computational Thinking

Based Pattern Assessment
(CTPA)

CTPA Programming

Individualized formative
assessment in real-time Yes No

Main target audience Teachers Researchers

This table summarizes different coding based assessment
tools in terms of four characteristics. These include a real-time
system for alerting the teacher if students are making mistakes,
explicitly displaying Computational Thinking Pattern based
assessment versus lower-level programming construct
assessment, the ability to formatively assess any student in real
time, and the main target audience of the system. In all of these
aspects REACT better informs teachers as to the state of
student projects.

Other coding-based assessment tools focus on summative
assessment, that is, assessing the final artifact produced by the
programming task. In contrast, REACT focuses on formative
assessment to assess students as they are coding. Since REACT
aims to enable teachers to see the state of student programs
quickly, it is necessary for REACT to integrate real time
embedded assessment with a quickly readable graphical
display that alerts the teacher to students who may need the
most help, or to tasks the class as a whole might not
understand. The combination of formative assessment
capability and its real-time use in the classroom makes REACT
unique and innovative.

The formative assessment capabilities of REACT are
important for the following reasons:

• REACT enables teachers to better understand student
mastery of specific topics in real time.

• REACT gives teachers an initial way to see if their students
are actively engaged in the coding endeavor (i.e. are the
students in Flow or in the ZPF region, or is the task too
challenging or boring?).

• REACT gives teachers the ability to perceive potential in-
class problems before they occur. This lets teachers
preemptively focus on adding scaffolding or challenges
before students develop the notion that programming is
“hard and boring.”

B. REACT Data Analysis
The REACT system is embedded into the online publicly

available Scalable Game Design Arcade [4, 13] enabling real
time data mining of student projects as they are programmed
during class. The REACT system breaks down all collectable
student project information and records it in the REACT
database. REACT analyzes the student project information
stored in this database through Computational Thinking Pattern
Analysis in real time. This analysis extracts semantic meaning
out of the code by interpreting which Computational Thinking
Patterns have been implemented by students. The analyzed
data are illustrated through different levels of visualization;
Computational Thinking Pattern Analysis Graph (Figure 2),
Computational Thinking Pattern Analysis Forensics (Figure 3),
and Assessment Dashboard (Figure 4).

Figure 2. CTPA Graph illustrates analyzed student skills and

learning at the semantic level

Figure 3. The Computational Thinking Pattern Analysis

Forensics graph explains how a student has progressed his/her

computational thinking pattern implementations by
programming with AgentSheets (or AgentCubes)

Figure 4. Example REACT Assessment Dashboard showing

every student’s performance in a given classroom.

The Assessment Dashboard indicates to teachers where
students are in their programming tasks. The dashboard
visualizes the programming progression for each student in the
class through CTPA [4]. In Figure 4, green indicates students
who are completing the program correctly, orange indicates
students who may need some help with their program, and red
indicates students who are in significant need of scaffolding.
The Dashboard clearly shows students that might be in trouble.
By selecting a specific student in the Dashboard, a teacher can
see in-depth representations of that student’s progression in
their Computational Thinking Pattern Analysis Graph [4] and
Computational Thinking Pattern Analysis Forensics.

IV. PRELIMINARY RESULTS
REACT testing took place over four weeks with four

teachers, six classes, 23 hours of class time, and 134 student
projects. All students were 6th graders with, according to each
teacher, little to no prior programming experience.

Findings of this proposed research study indicate an
overwhelmingly positive reaction from teachers using REACT,
with every teacher in the study planning to independently
continue using REACT in future game programming
assignments.

For example, one teacher felt that REACT helped identify
struggling students more effectively stating:

 “As everybody was starting the game I feel they benefitted
because I could see how they were starting. As they were
progressing I would say it was more attributal to those
students who were struggling—not beginners but I would call
them challenged learners—my low end learners who are
struggling, those students who are struggling and having a

hard time I feel like it’s better to give those students
intervention”

Furthermore, another teacher, comparing the current
REACT to a non-REACT class stated the following:

“We got more done in this class and we asked them to do
more. We approached it the same way. In the other (non-
REACT) class I couldn’t tell where they were I had to rely on
the helpers. With REACT I was able to say that person is not
up to speed and send someone over there and I couldn’t do that
this morning (non-REACT class) so that was interesting… I’m
a lot more positive about it now than I was just looking at it
from before we had classes. I see the power in it and I see very
useful things particularly for a beginning class with a
beginning project.“

More in-depth research must be done; however, these teacher
testimonials begin to indicate the power of a REACT enabled
classroom for helping teachers to support students in their
computer programming project based learning activities.

The following table lists the general realized anticipated
benefits and the un-anticipated collateral benefits indicated in
this REACT study.

Anticipated Benefits Collateral Benefits
REACT enables formative
assessment of game design

projects

Teacher summative
assessment of student game

design projects using the
REACT tool

REACT can be use by the
teacher for effective in-class

management through
intervention

REACT can lead student self-
assessment and peer

interaction, and
teacher/student 2 way

validation

V. CONCLUSION
Our work on REACT thus far begins to show its power to

aid teachers in their real-time assessment goals related to
computational thinking skills. However, much more field
research must be completed in order to evaluate and validate
the current REACT approach and strategy. For example, what
presentation of the REACT data is most and least useful to
teachers interpreting student progressions and learning
achievement? What should be modified in subsequent
incarnations of the REACT system?

In our previous research [10], we discussed our evidence
for the existence of the Zones of Proximal Flow. REACT
begins to implement an early proof of concept strategy to
illustrate student skills and challenges that progress over time
through the Scalable Game Design curriculum. Still the
question of how to set the thresholds for the anxiety and
boredom zones remains. As data is collected from thousands
more students from numerous classrooms and districts across
the United States, it is our hope that the REACT system can
help make more explicit the thresholds for these ZPF regions.

VI. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation

under Grant Numbers DLR-0833612, IIP-1345523, and IIP-
0848962. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Wing, J. M. Computational Thinking. Communications of the ACM, 49,

3 2006), 33-35.
[2] Vasagar, J. Michael Gove, to scrap 'boring' IT lessons. the Guardian

News, http://www.guardian.co.uk/politics/2012/jan/11/michael-gove-
boring-it-lessons, 2012.

[3] Repenning, A. and Ioannidou, A. Broadening Participation through
Scalable Game Design. In Proceedings of the ACM Special Interest
Group on Computer Science Education Conference, (SIGCSE 2008)
(Portland, Oregon USA, 2008). ACM Press, 305-309.

[4] Koh, K. H., Basawapatna, A.,Bennett, V., et al., Towards the Automatic
Recognition of Computational Thinking, IEEE International Symposium
on Visual Languages and Human-Centric Computing 2010, Leganés-
Madrid, Spain, September 21-25, 2010

[5] Trees, A. R., and Jackson, M. H. The learning environment in clicker
classrooms: Student processes of learning and involvement in large
university level courses using student response systems. Learning,
Media and Technology, 32, 1 (2007), 21-40.

[6] Caldwell, J. E. Clickers in the large classroom: Current research and
best-practice tips. CBE-Life Sciences Education 6 (2007), 9-20.

[7] Gardner, T. Q., Kowalski, S. E., and Kowalski, F. V. Interactive
simulations coupled with real-time formative assessment to enhance
student learning. In Proc. 2012 American Society for Engineering
Education Conference and Exposition, ASEE (2012).

[8] Carter, P. An experience report: On the use of multimedia pre-
instruction and just-in-time teaching in a CS1 course. In Proc. 43rd
ACM Technical Symposium on Computer Science Education, ACM
Press (2012), 361-366.

[9] Teel, S., Schweitzer, D., and Fulton, S. Braingame: A web-based student
response system. Journal of Computing Sciences in Colleges, 28, 2
(2012), 40-47.

[10] Basawapatna, A., Repenning, A., Koh, K. H., Nickerson, H., The Zones
of Proximal Flow: Guiding Students through a Space of Computational
Thinking Skills and Challenges, ICER '13: International Computing
Education Research Conference, August 12-14 , San Diego, California,
USA.

[11] Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience.
Harper Collins Publishers, New York, 1990.

[12] Vygotsky, L. S. and Kozulin, A. Thought and Language. The MIT
Press, 1996.

[13] Ioannidou, A., Bennett, V., Koh, K. H., et al. Computational Thinking
Patterns. In Proceedings of the Annual Meeting of the American
Educational Research Association (AERA 2011) (New Orleans, LA,
April 8-12, 2011)

[14] Michotte, A. The Perception of Causality, Methuen & Co. Ltd.,
London, 1963.

[15] Boe, B., Hill, C., Len, M., et al. Hairball: lint-inspired static analysis of
scratch projects. In Proceedings of the Proceeding of the 44th ACM
technical symposium on Computer science education (Denver,
Colorado, USA, 2013), ACM, 215-220.

[16] Brennan, K. and Resnick, M. New frameworks for studying and
assessing the development of computational thinking. City, 2012.

