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ABSTRACT 

In this paper, we investigate the correspondence between student 

affect in a web-based tutoring platform throughout the school year 

and learning outcomes at the end of the year, on a high-stakes 

mathematics exam. The relationships between affect and learning 

outcomes have been previously studied, but not in a manner that is 

both longitudinal and finer-grained. Affect detectors are used to 

estimate student affective states based on post-hoc analysis of 

tutor log-data. For every student action in the tutor the detectors 

give us an estimated probability that the student is in a state of 

boredom, engaged concentration, confusion, and frustration, and 

estimates of the probability that they are exhibiting off-task or 

gaming behaviors. We ran the detectors on two years of log-data 

from 8th grade student use of the ASSISTments math tutoring 

system and collected corresponding end of year, high stakes, state 

math test scores for the 1,393 students in our cohort. By 

correlating these data sources, we find that boredom during 

problem solving is negatively correlated with performance, as 

expected; however, boredom is positively correlated with 

performance when exhibited during scaffolded tutoring. A similar 

pattern is unexpectedly seen for confusion. Engaged concentration 

and frustration are both associated with positive learning 

outcomes, surprisingly in the case of frustration. 

Categories and Subject Descriptors 

H.1.2 [Human Factors]: Models and Principles  

General Terms 

Algorithms, Measurement, Human Factors. 

Keywords 

Affect, confusion, boredom, high stakes tests, tutoring, detectors, 

prediction, data mining. 

1. INTRODUCTION 
In recent years, researchers have increasingly investigated the 

relationship between fine-grained details of student usage of 

tutoring systems and performance on high-stakes examinations 

[cf. 14, 18]. Understanding how different student behaviors 

correspond to student outcomes can help us to understand the 

larger implications of student choices that might seem only 

momentary. This information can be useful both in terms of 

advancing theory on meta-cognition and engagement [cf. 1, 6], 

and to provide actionable information for teachers about factors 

potentially influencing their students’ learning outcomes [2]. 

Within this paper, we analyze the relationships between a 

student’s affect and their outcomes. Several studies have indicated 

that affect can lead to differences in learning [12, 19, 21]; 

however, past research on these relationships has been limited by 

the use of observational or survey methods, which are either 

coarse-grained, or can only be applied over brief periods of time 

(year-long field observations are possible, but prohibitively 

expensive to conduct for large numbers of students). Within this 

paper, we use automated detectors of affect that can be applied to 

every student actions in an entire year’s log file data to analyze 

this question, asking how predictive a student’s affect, throughout 

the school year, is of his or her end of year high stakes test 

outcome. In specific, we investigate overall relationships between 

affect and learning, and dig deeper to ask, are there some contexts 

where a particular affect is constructive and others where it is not? 

We investigate these questions in the context of two school years 

of student learning within the ASSISTments tutoring system [14], 

involving over a thousand students.   

1.1 The Tutor and the Test 
ASSISTments is a web-based tutoring platform, primarily for 7th-

12th grade mathematics. Within ASSISTments, shown in Figure 1, 

students complete mathematics problems and are formatively 

assessed – providing detailed information on their knowledge to 

their teachers – while being assisted with scaffolding, help, and 

feedback. Items in ASSISTments are designed to correspond to 

the skills and concepts taught in relevant state standardized 

examinations. Figure 1 shows how after the student answers the 

original question incorrectly, the system provides scaffolding that 

breaks the problem down into steps. Hints are provided at each 

step and the student can ask for a bottom-out hint that eventually 

tells the answer. Students in the data sets studied within this paper 

used the ASSISTments in classroom computer lab sessions 

targeted towards preparation for the standardized state test, during 

school hours. While teachers had the ability to assign students 

questions of a particular skill, the most popular problem set within 

the data set that will be analyzed in this paper was one that 

randomly sampled 8th grade math test prep questions from the 

system. Because of this, students sometimes received questions 

with skills they had not encountered in class yet. One data set, 

used to develop models of student affect, represented a few days 



 

of software usage. The other data set, used to study the 

relationship between student affect and learning outcomes, 

represents an entire year of data of students using the 

ASSISTments system. 

Near the end of their school year, students took the MCAS 

(Massachusetts Comprehensive Assessment System) state 

standardized test. We collected scores for the math portion of the 

test. Raw scores range from 0 to 54 and are later scaled by the 

state after all tests are in. The scaling maps to four categories; 

Failing, Needs Improvement, Proficient, and Advanced. Students 

must score above Failing to graduate high school and an 

Advanced score earns them an automatic state college 

scholarship.  

2. METHODOLOGY 
In this section we will describe both the methodology for 

employing the automatic affect detectors to our dataset and the 

methodology for conducting the correlation analysis. Our detector 

development methodology built off of past work in other learning 

systems [cf. 7], but this paper represents the first publication of 

our affect detectors for the ASSISTments platform.  

2.1 Affect and Behavior Detection 
In order to assess student affect and behavior across contexts, we 

adopt a two-stage process: first labeling student affect and 

behavior for a small but reasonably representative sample with 

field observations [cf. 4], and then using those labels to create 

automated detectors that can be applied to log files at scale. The 

detectors are created by synchronizing log files generated by the 

ASSISTments system with field observations conducted at the 

same time. To enhance scalability, only log data is used as the 

basis of the detectors; physical sensors can enhance detector 

goodness [cf.11, 13], but reduce the applicability of the resultant 

models to existing log files. The detectors are constructed using 

log data from student actions within the software occurring at the 

same time as or before the observations, making our detectors 

usable for automated interventions, as well as the type of 

discovery with models analysis conducted in this paper. Our 

process for developing sensor-free affect and behavior detectors 

for ASSISTments replicates a process which has been successful 

for developing affect detectors for a different intelligent tutor, 

Cognitive Tutor Algebra [7]. 

2.1.1 Data Collection 
Two sets of data from ASSISTments were used in this study.  

The first data set was used to develop the automated detectors of 

affect. This data set was composed of field observations of affect 

and behavior that were conducted over a few days in an urban 

middle school in central Massachusetts, sampled from a diverse 

population of 229 students. Within this school, 40% of students 

were Hispanic, 14% were African-American, 4% were Asian-

American, and 39% were Caucasian. In this school, per capita 

income was significantly lower than the state average. 

Information from these observations and the corresponding 

interaction logs was used to develop and validate the affect 

detectors discussed below.  

The second data set was used to conduct analyses of the 

relationships between affect and learning. This data set was 

composed of action log files that were distilled from a diverse 

population (racially and socio-economically) of 1,393 students 

that came from middle schools in the same city in central 

Massachusetts, in 2004-2005 and 2005-2006 (these years were 

chosen due to the availability of standardized examination data). 

629 students used the software in 2004-2005, and 764 students 

used the software in 2005-2006. This data set involved a whole 

year of students using the software for two hours, twice a week. 

As this data set represented whole-year usage of the software, 

810,000 student actions (entering an answer or requesting help) 

were represented in the data. The affect models were applied to 

this larger dataset.  

2.1.2 Affect and Behavior Observations 
Student affect and behavior was coded by a pair of expert field 

observers as students used ASSISTments in 2010. An observation 

protocol developed for coding affect during the use of educational 

software [cf. 4] was implemented using field observation 

synchronization software [7] developed for Google Android 

handheld devices. Each observation lasted up to twenty seconds, 

with elapsed observation time so far displayed by the hand-held 

observation software. If affect or behavior was labeled before 

twenty seconds elapsed, the coder moved to the next observation. 

Each observation was conducted using side glances, to reduce 

observer effects. To increase tractability of both coding and 

eventual analysis, if two distinct affective states were seen during 

a single observation, only the first state observed was coded. Any 

Figure 1. An example of an ASSISTments item where the student 

answers incorrectly and receives scaffolding help 



 

affect or behavior of a student other than the student currently 

being observed was not coded. The observers based their 

judgment of a student’s affect or behavior on the student’s work 

context, actions, utterances, facial expressions, body language, 

and interactions with teachers or fellow students. These are, 

broadly, the same types of information used in previous methods 

for coding affect [e.g., 8], and in line with Planalp et al.’s [20] 

descriptive research on how humans generally identify affect 

using multiple cues in concert for maximum accuracy rather than 

attempting to select  individual cues. Affect and behavior coding 

was conducted on a handheld app previously designed for this 

purpose [7]. Student affect or behavior was coded according to the 

following set of categories: boredom, frustration, engaged 

concentration, confusion, off-task behavior, gaming, and any 

other affective or behavior state. These categories were chosen 

due to past evidence that they are relatively common and are 

either associated with learning or hypothesized to be associated 

with learning [cf. 1, 3, 4, 7, 9, 12, 16, 17, 21]. The affective 

categories were defined for coding according to the definitions in 

[4], and the behavior categories were defined according to the 

definitions in [3, 4].  

At the beginning of data collection, an inter-rater reliability 

session was conducted, where the two coders coded the same 

student at the same time, across 51 different coding instances 

across multiple students. With reference to the categories of affect 

studied in this paper, inter-rater reliability achieved Cohen’s 

Kappa of 0.72, indicating agreement 72% better than chance. For 

categories of behavior, inter-rater reliability achieved Cohen’s 

Kappa of 0.86, agreement 86% better than chance. This level of 

agreement is substantially higher than the level of agreement 

typically seen for video coding of affect [13, 24]. After this 

session, the observers coded students separately, for a total of 

3,075 observation codes. 

Within the observations, not counting observations marked as “?” 

(which represent cases where coding was impossible, due to 

uncertainty, behavior outside the coding scheme, a student leaving 

the room, impossible positioning, or other factors), boredom was 

observed 21.7% of the time, frustration was observed 5.4% of the 

time, engaged concentration 65.0% of the time, confusion was 

observed 7.9% of the time. In terms of behavior, off-task behavior 

was observed 21.9% of the time, and gaming was observed 1.5% 

of the time. This distribution of affect and behavior corresponds to 

previous studies, where engaged concentration is the most 

prevalent affect in a classroom environment [4, 7, 22]. 

2.1.3 ASSISTments Interaction Logs 
During observations, both the handhelds and the educational 

software logging server were synchronized to the same internet 

time server, using the same field observation data collection 

software as was used in [7]. This enabled us to determine which 

student actions within the software were occurring when the field 

observations occurred. Interactions with the software during the 

twenty seconds prior to data entry by the observer were 

aggregated as a clip, and data features were distilled.  

The original log files consisted of data on every student attempt to 

respond (and whether it was correct), and requests for hint and 

scaffolding, as well as the context and time taken for each of these 

actions. In turn, 40 features were distilled from each action, 

including features distilled for detecting other constructs in 

ASSISTments [cf. 5], and features developed for detecting student 

behavior and affect in Cognitive Tutors [cf. 3, 7]. Many of the 

distilled features pertained to the student’s past actions, such as 

how many attempts the student had previously made on this 

problem step, how many previous actions for this skill or problem 

step involved help requests, how many incorrect actions the 

student had made on this problem step, and so on. To aggregate 

individual student actions into twenty-second clips, the sum, 

minimum, maximum, and average values were calculated across 

actions for each clip. This relatively simple approach to 

summarizing features was used due to its success in similar 

problems in other learning systems [cf. 7]. Thus, for the creation 

of affect and behavior models, a total of 160 features were used. 

2.1.4 Creation of Affect and Behavior Models 
A detector for each affective state or behavior was developed 

separately, comparing that affective state to all other affective 

states (e.g., “Bored” was compared to “Not Bored,” “Frustrated” 

was compared to “Not Frustrated,” “Engaged Concentration” was 

compared to “Not Engaged Concentration”, and “Confused” was 

compared to “Not Confused”), or comparing that behavior to all 

other behaviors (e.g., “Off-task” was compared to “Not Off-task,” 

“Gaming” was compared to “Not Gaming,”). Each detector was 

evaluated using 5-fold cross-validation, at the student-level (e.g. 

detectors are trained on four groups of students and tested on a 

fifth group of students). By cross-validating at this level, we 

increase confidence that detectors will be accurate for new groups 

of students. Further, in this student-level cross-validation, students 

were stratified into fold assignments based on their training labels. 

This guarantees that each fold has a representative number of 

observations of the majority and minority class. In addition, for 

unbalanced classes, re-sampling was used on the training sets to 

make the class frequency more equal for detector development 

(but detector goodness was validated on a data set that was not re-

sampled, to ensure model validity for data with natural 

distributions). We attempted to fit sensor-free affect detectors 

using eight common classification algorithms, including J48 

decision trees, step regression, JRip, Naive Bayes, K*, and REP-

Trees. These algorithms were chosen as a sample of the space of 

potential algorithms, which can represent data with different 

patterns, but each of which is relatively conservative and not 

highly prone to over-fitting. (Further discussion of the specific 

algorithms that were effective is given below). 

Feature selection for machine learning algorithms was conducted 

using forward selection, where the feature that most improves 

model goodness is added repeatedly until no more features can be 

added which improve model goodness (Table 1). During feature 

selection, cross-validated kappa on the original (non-re-sampled) 

data set was used as the goodness metric. Prior to feature 

selection, all features with cross-validated kappa equal to or below 

zero in a single-feature model were omitted from further 

consideration, as a check on over-fitting.  

The affect and behavior detectors’ performance was evaluated on 

their ability to predict the presence or absence of each affective 

state or behavior in a clip. Detectors were evaluated using A' [15], 

Cohen’s Kappa [10], and F-measure [25] goodness metrics. The 

A' metric (equivalent to area under the ROC curve) is the 

probability that the model will be able to discriminate a randomly 

chosen positive case from a randomly chosen negative case. An A' 

value of 0.5 for a model indicates chance-level performance, and 

1.0 performing perfectly. Cohen’s Kappa assesses the degree to 

which the model is better than chance at identifying the affective 

state or behavior in a clip. A Kappa of 0 indicates chance-level 

performance, while a Kappa of 1 indicates perfect performance. A 

Kappa of 0.45 is equivalent to a detector that is 45% better than 

chance at identifying affect or behavior. The F-measure of F1-

score is a measure of the model's accuracy, computing for the 



 

weighted average of the model's precision and recall where the 

best F1 score is at 1 and the worst score is 0. 

All of the affect and behavior detectors performed better than 

chance (Table 1). Detector goodness was somewhat lower than 

had been previously seen for Cognitive Tutor Algebra [cf. 7], but 

better than had been seen in other published models inferring 

student affect in an intelligent tutoring system solely from log 

files (where average Kappa ranged from below zero to 0.19 when 

fully stringent validation was used) [7, 11, 13, 22]. The best 

detector of engaged concentration involved the K* algorithm, 

achieving an A' of 0.678,a Kappa of 0.358, and an F-measure of 

0.687. The best boredom detector was found using the JRip 

algorithm, achieving an A' of 0.632, a Kappa of 0.229, and an F-

measure of 0.632. The best frustration detector achieved an A' of 

0.682, a Kappa of 0.324, and an F-measure of 0.677, using the 

Naive Bayes algorithm.  The best confusion detector used the J48 

algorithm, having an A’ of 0.736, a  Kappa of 0.274, and an F-

measure of 0.667. The best detector of off-task behavior was 

found using the REP-Tree algorithm, with an A’ value of 0.819, a 

Kappa of 0.506, and an F-measure of 0.693. The best gaming 

detector involved the K* algorithm, having an A’ value of 0.802, 

a Kappa of 0.370, and an F-measure of 0.687. These levels of 

detector goodness indicate models that are clearly informative, 

though there is still considerable room for improvement.  

Table 1. Performances of affect and behavior models 

Affect Algorithm A’ Kappa 
F-

Measure 

Boredom JRip 0.632 0.229 0.632 

Frustration 
Naive 

Bayes 
0.682 0.324 0.677 

Engaged 

Concentration 
K* 0.678 0.358 0.687 

Confusion J48 0.736 0.274 0.667 

Off-Task REP-Tree 0.819 0.506 0.693 

Gaming K* 0.802 0.370 0.750 

 

Detector features for boredom include the total number of actions, 

the total time spent on the last action before the clip and the first 

action after the clip, and the student’s history of help requests and 

correct answers. For example, students were deemed bored when 

they spent over 83 seconds inactive immediately before or after 

the observation (lengthy pauses are also an excellent predictor of 

off-task behavior [cf. 3], a behavior thought to be associated with 

boredom). Students were also deemed bored when they worked on 

the same problem during the entire observation but did not 

provide any correct answers either during the observation or 

immediately afterwards (a serious and actively working student 

will generally obtain some correct answers in ASSISTments, as 

increasingly easy scaffolding is given when students make errors).    

The detector’s features for frustration involve the percent 

occurrence in the past of incorrect answers on a skill, the largest 

hint count in that clip, the average correct actions in that clip, the 

largest number of scaffolding for a problem in that clip, the total 

number of past help request for that clip, the total number of 

actions that were second to the last hint for that clip, the largest 

number of consecutive errors in that clip, and least sum of right 

actions in that clip. The resulting model showed students that had 

low average of correct actions were frustrated.   

Features used in the engaged concentration detector included the 

number of correct answers during the clip, the proportion of 

actions where the student took over 80 seconds to respond, 

whether the student followed scaffolding with a hint request, 

whether the student received scaffolding on the first attempt in a 

problem, and how many of the student’s previous five actions 

involved the same problem. The model was created using the K* 

algorithm, which is an instance-based classifier. Instance-based 

classifiers predict group membership based on similarities to 

specific cases in the training set, rather than general rules, 

enabling them to identify constructs which can manifest in several 

distinct ways. For example, one group of students in engaged 

concentration repeatedly answered correctly in less than 80 

seconds. Another group of students in engaged concentration 

answered incorrectly on their first attempt at a problem but then 

spent considerable time making their first response to the 

scaffolding question they received. 

For confusion, detector features included the total number of 

consecutive incorrect actions for that clip, number of hints used 

for that clip, the number of correct actions in the clip, total 

number of past incorrect actions for a skill in that clip, correct 

actions that took time to answer, actions for a skill that the student 

got incorrect previously and that took time to answer. The 

resulting model was fairly complex, but one relationship 

leveraged in the model is that students who commit consecutive 

errors in a row for a skill are deemed confused. Another 

relationship is when students committed a number of incorrect 

actions in the past for a skill and took a long time to answer the 

current one, they are seen as confused. 

The off-task detector included the total number of attempts made 

for a skill in that clip, the time taken by a student to answer, if a 

student has a correct action for that clip, average number of 

scaffold in that clip, and total number of incorrect actions in the 

past in the clip. The resulting model also was complex, but one 

relationship shows that if there were few attempts for a problem, 

and it took them a long time to answer, the student exhibits off-

task behavior. 

The features for the gaming detector included the use of a bottom-

out hint in the clip, the number of hint usage for that clip, the 

average hint counts for a skill in that clip, the total number of 

actions for that clip that were answered incorrectly, and the 

occurrence of scaffold in that clip. The resulting model for 

gaming, like engaged concentration, used the K* algorithm. 

Hence, similarities that resulted to the group of gaming students 

included those that usually used bottom-out hints, scaffolding and 

hints. 

2.2 Application of Models to Broader Data 

Set 
Once the detectors of student affect and behavior were developed, 

they were applied to a broader data set consisting of two school 

years of student usage of the ASSISTments system by Worcester 

middle schools, 2004-2005 and 2005-2006. As discussed above, 

these schools represented a diverse sample of students in terms of 

both ethnicity and socio-economic status. This data set included 

1,393 students and around 810,000 student actions within the 

learning software. The same features as discussed above were 

distilled for these data sets. Using these detectors, we were able to 

predict student affect and behavior for each student action within 

the ASSISTments system. 



 

2.2.1 Correlation analysis 
In order to correlate students’ affect estimates with their raw state 

test scores we first had to summarize their affect during the year, 

calculating one number per affective state per student. For each 

affective state we calculated the mean of the predicted 

probabilities for that state during performance on each skill in the 

system. This list of means for each skill was then averaged to 

produce summarized overall proportion of affect  for the student. 

This averaging gives equal weighting of affect for each skill. This 

procedure was used because the MCAS test, which we are 

correlating to, consists of a random selection of skills. The 

weighting prevents a more frequently studied skill from having an 

influence on the students summarized affect that is 

disproportionate to its representation on the test. 

Table 2. Example student affect dataset to be summarized 

Student Skill Probability of Bored Is Original? 

Tricia Subtraction 0.20 Yes 

Tricia Subtraction 0.50 No 

Tricia Subtraction 0.50 No 

Tricia Addition 0.90 Yes 

Tricia Addition 0.70 Yes 

 

Table 2 shows example affect data for calculating the summary of 

the bored affective state for one student. To calculate the degree 

of boredom during the year for the student in Table 2, the 

following calculation would be used: 

��������		
���
�� =
�
0.20 + 0.50 + 0.50�3 + 
0.90 + 0.70�2 �

2= 0.60 

We also calculate the summarized affect for each student for 

original and scaffold questions separately. In ASSISTments, 

scaffold questions are given when a student asks for help or 

answers an original question (main question) incorrectly. The 

scaffolding often consists of several sub questions and students 

know that they will be required to go through the scaffolding if a 

question is answered incorrectly; therefore we wanted to allow for 

the possibility of observing different affect during original 

questions than scaffolds. 

3. RESULTS 
After summarizing the estimates of each student’s affect, we used 

Pearson correlation to observe the correspondence between their 

affect and their end-of-year state test score. The results below 

show the correlation of affect to test score for the two years of 

data. We report separately on the affect experienced by students 

while answering original questions and the affect while answering 

scaffold questions, as the patterns of affect were substantially 

different in these two cases. Across tests, the high sample size 

resulted in most correlations being statistically significant (using 

the standard t-test for correlation coefficients, two-tailed). 

 

 

 

 

Table 3. Correlation of student affect to their raw state test score. 

Statistically significant results (p<0.05) are given in boldface; 

results where p<0.01 are also italicized. 

Correlation ORIGINAL SCAFFOLD 

AFFECT ‘04-‘05 ‘05-‘06 ‘04-‘05 ‘05-‘06 

Boredom -0.11930 -0.27977 0.32082 0.26884 

Engaged 

Concentration 

0.44923 0.25794 0.20988 0.09238 

Confusion -0.16538 -0.08912 0.37370 0.23457 

Frustration 0.30524 0.20376 0.26182 0.22418 

Off-Task 0.14820 -0.00662 0.16985 -0.10793 

Gaming -0.43083 -0.30125 -0.32933 -0.24688 

 

The strongest positive correlation, as shown in Table 3, was for 

engaged concentration on original questions. For 2004-2005, 

r=0.45, t(624)= 12.56, two-tailed p<0.01. For 2005-2006, r=0.26, 

t(760) = 7.36, two-tailed p<0.01.  This finding is unsurprising, and 

maps to previous results showing a positive relationship between 

this affective state and learning [cf. 12, 21]. Even on scaffolding 

items, this relationship remained positive.  For 2004-2005, r=0.21, 

t(624)= 5.36, two-tailed p<0.01. For 2005-2006, r=0.09, t(760) = 

2.56, two-tailed p=0.01. 

Boredom on original questions was negatively associated with 

learning outcomes, again matching previous research [cf. 12, 19, 

21]. For 2004-2005, r= -0.12, t(624)= -3.00, two-tailed p<0.01. 

For 2005-2006, r= -0.28, t(760) = -8.03, two-tailed p<0.01. 

However, boredom on scaffolding questions was associated with 

better learning. For 2004-2005, r= 0.32, t(624)= 8.46, two-tailed 

p<0.01. For 2005-2006, r= 0.27, t(760) = 7.69, two-tailed p<0.01. 

In interpreting this finding, it is worth considering why a student 

would become bored on a scaffolding question. One possibility is 

that the student knew the skill in the original question, but was 

careless [cf. 23], which would explain these positive correlations. 

Another possibility is that high scoring students may know most 

of the skills involved with an original problem but not enough to 

answer correctly. When they are forced into the scaffolding, 

which breaks the main problem into individual skill sub questions, 

they become bored because they are being made to work on 

simpler questions that they already know the answers to. 

Confusion had a similar pattern to boredom, with weak negative 

associations for original questions. For 2004-2005, r= -0.17, 

t(624)= -4.19, two-tailed p<0.01. For 2005-2006, r= -0.09, t(760) 

= -2.47, two-tailed p=0.01. By contrast, positive associations were 

found for scaffolding questions. For 2004-2005, r= 0.37, t(624)= 

10.06, two-tailed p<0.01. For 2005-2006, r= 0.23, t(760) = 6.65, 

two-tailed p<0.01. Recent work has suggested that confusion 

impacts learning differently, depending on whether it is resolved 

[16], and that in some situations, confusion can be beneficial for 

learning [17]. The finding here accords with those papers, 

suggesting that confusion can be positive if it occurs on items 

designed to resolve that confusion.  

Frustration had a positive correlation to learning, both for original 

items and scaffolding items. For original items, for 2004-2005, r= 

0.31, t(624)= 8.01, two-tailed p<0.01. For 2005-2006, r= 0.20, 

t(760) = 5.74, two-tailed p<0.01. For scaffolding items, for 2004-

2005, r= 0.26, t(624)= 6.78, two-tailed p<0.01. For 2005-2006, r= 

0.22, t(760) = 6.34, two-tailed p<0.01. This finding is unexpected. 

Past research has suggested little relationship between frustration 



 

and learning [12, 21], contrary to hypotheses of a negative 

correlation. One possibility is that frustration in ASSISTments 

shows up in teacher reports in terms of negative performance, and 

that these students receive greater support from their teachers. 

Clearly, it will be valuable to follow up and study this unexpected 

result further.  

Gaming the system had a negative correlation with learning 

outcomes.  For original items, for 2004-2005, r=  -0.43, t(624)= -

11.92, two-tailed p<0.01. For 2005-2006, r= -0.30, t(760) = -8.71, 

two-tailed p<0.01. For scaffolding items, for 2004-2005, r=  -0.33, 

t(624)= -11.92, two-tailed p<0.01. For 2005-2006, r= -0.25, t(760) 

= -8.71, two-tailed p<0.01. These findings match previous 

evidence that gaming is associated with poorer learning [1, 9].  

The relationship between off-task behavior and learning was 

unstable between years, and weak in all cases. It varied between 

positive and negative, between years. For original items, for 2004-

2005, r=  0.15, t(624)= 3.74, two-tailed p<0.01. For 2005-2006, r= 

-0.01, t(760) = -0.18, two-tailed p=0.86. For scaffolding items, for 

2004-2005, r=  -0.17, t(624)= 4.31, two-tailed p<0.01. For 2005-

2006, r= -0.11, t(760) = -2.99, two-tailed p<0.01. It is not clear 

why the relationships between off-task behavior and learning were 

inconsistent between years.  

3.1 Affect by Test Proficiency Category 
Within this section, we ask: based on the results above (as well as 

prior research), are successful students mostly in a state of 

engaged concentration? Are unsuccessful students mostly gaming 

the system? To answer these questions we plot the affective state 

estimates by test proficiency category to reveal the dominant 

affective states with respect to test outcomes. 

Figure 2 plots the state test proficiency category against the 

average estimate of affect on original questions for all students in 

that proficiency category. This is an average of the same 

probability estimates calculated in section 2.2.1. Note that these 

are the summarized affect estimates and therefore do not 

necessarily add to one. Non-summarized estimates may also not 

add to one because separate classifiers were used for each affect 

detector. While a multi-nominal classifier would guarantee a 

summing to one of predictions for each clip, it would not 

guarantee a more accurate prediction overall, particularly for 

underrepresented classes. 

 

Figure 2. Probability of affect on original questions by test score 

category (average of both years’ data) 

We can observe from Figure 2, that the top affective state on 

original questions among failing students was boredom followed 

by engaged concentration and frustration. The margin between 

boredom and engaged concentration narrows until there is equal 

parts of the two, including frustration, among students scoring in 

the Proficient category. For students scoring in Advanced, a 

category which earns the students a college scholarship, 

frustration is unexpectedly the most probable affective state, 

trading places with boredom and with engaged concentration 

splitting the difference. This graph suggests that equal parts 

engaged concentration and boredom on the system is estimated of 

students who pass the test with proficient. If estimates of boredom 

increase over concentration, this may be a signal for the teacher to 

provide a motivational intervention.  The position of frustration, 

on the other hand, is somewhat surprising, raising the question of 

whether students react with frustration instead of boredom in 

response to material they find too easy.  

 

Figure 3. Probability of affect on scaffolds by test score category 

(average of both years’ data) 

The breakdown of affective state estimation on scaffold questions, 

shown in Figure 3, shows similarities to Figure 2 with frustration, 

engaged concentration and boredom being the most probable 

affective states. One difference is that frustration is dominant 

across all test proficiency categories, and engaged concentration 

and boredom showing little to no difference in probability 

between one another. On original questions, the interesting 

interaction was engaged concentration and frustration increasing 

in probability over boredom with higher scoring students. On 

scaffolds, the interesting interaction is among gaming, off-task 

behavior, and confusion. Among failing students, gaming is 

strongest, followed by off-task behavior, and then confusion. As 

the proficiency level increases, off-task and confusion become 

more probable as gaming becomes less common than they are. 

There are equal parts of these three states at the proficient level 

much like there were equal parts frustration, engaged 

concentration and boredom at the proficient level for original 

questions. The takeaway for teachers here may be that gaming is 

generally undesirable, but confusion is not entirely problematic – 

successful students experience confusion on scaffolding items 

(perhaps because they are engaging with the material rather than 

disengaging by gaming the system).   

Curiously, once again, highly successful students become 

frustrated more often on scaffolding items than less successful 

students. It may be that in these cases, students become annoyed 

and then frustrated at receiving scaffolding after making a 

mistake; or it may be that they are frustrated with themselves 

when they do not succeed. Higher levels of frustration may reflect 

a higher level of student emotional investment or pride in 

mastering the knowledge required to answer the problem. Since 

the problem sets used by students in these years of the tutor gave a 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Failing Needs

Improvement

Proficient Advanced

P
ro

b
a

b
il

it
y

 o
f 

A
ff

e
c
t

State Test Outcome Category

Affect on Original Questions

Frustration

Concentration

Boredom

Off-task

Gaming

Confusion

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Failing Needs

Improvement

Proficient Advanced

P
ro

b
a

b
il

it
y

 o
f 

A
ff

e
ct

State Test Outcome Category

Affect on Scaffold Questions

Frustration

Concentration

Boredom

Off-task

Gaming

Confusion



 

random sampling of 8th grade skills, it is conceivable that this 

random ordering was a significant source of reasonable frustration 

for high and low proficiency students alike.  

There is an observable difference in the magnitudes of affect 

estimates on originals and scaffolds. Table 4 quantifies this 

difference by calculating the estimate on scaffolds subtracted by 

the estimate on originals for each proficiency category. The 

average of these values across categories is shown in Table 4 

along with the standard deviation among the four categories. If the 

shape of the trend line curve stays the same but is off-set from 

Figure 1 to Figure 2 uniformly across categories, this will result in 

an average difference but zero standard deviation. A high standard 

deviation indicates that the change in affect between scaffolds and 

originals is not of uniform magnitude across categories.  

Table 4. Scaffold estimate subtracted by Original affect estimate 

and standard deviation across proficiency categories 

Affect Std. Avg. 

Frustration 0.0142 0.1543 

Confusion 0.0404 0.0566 

Concentration 0.0165 0.0365 

Boredom 0.0301 0.0333 

Gaming 0.0262 -0.0286 

Off-task 0.0067 -0.0778 

 

Table 5. Difference between Scaffold and Original affect estimates 

with the highest standard deviation across the proficiency categories 

Affect Failing Needs 

Imp. 

Proficient Advanced Std. 

Confusion 0.0205 0.0323 0.0626 0.1111 0.0404 

Boredom 0.0037 0.0183 0.0376 0.0735 0.0301 

Gaming -0.0008 -0.0191 -0.0313 -0.0631 0.0262 

 

Table 4 shows that students are more likely to be frustrated in 

scaffolding than when answering original questions. Frustration 

increases by 0.1543 on average, the most of the affective states. 

This increase is fairly uniform across proficiency categories with 

a standard deviation of only 0.0142. The estimates of Confusion, 

Concentration and boredom increase in the Scaffolds but to a far 

lesser degree than Frustration. Gaming and Off-task behavior 

estimates decrease in Scaffolding. The change in these estimates 

were uniform across proficiency categories, indicated by the low 

standard deviation. The states with the highest standard deviation, 

shown in Table 5, although still low, were; Confusion, Boredom, 

and Gaming. The increase in Confusion on Scaffolds was greater 

as the proficiency level increased, with Failing students showing a 

0.0205 increase and Advanced students showing a 0.1111 

increase. A similar, lower magnitude, trend was observed for 

Boredom. A decrease in Gaming was observed with increasing 

magnitude as proficiency level increased. Boredom and Confusion 

change from being negatively correlated with proficiency on 

Originals to being positively correlated with proficiency in 

Scaffolds, as shown in Table 3. With this kind of change we 

would expect to see a variance in the change in estimates across 

proficiencies for these states. 

4. CONCLUSIONS 
In this paper, we evaluate the relationship between affect in a 

tutoring system over the course of a year, to performance on an 

end of year high stakes test. Differentiating affect on original 

problems versus scaffolding help problems elicited interesting 

results, in terms of boredom and confusion. Students who were 

bored or confused while answering the main problems, tended to 

do poorly on the test; however, boredom and confusion on 

scaffolding were associated with positive performance on the test. 

Gaming the system was, as expected, associated with poorer 

learning, while off-task behavior was not consistently associated 

with poorer learning. One unexpected finding was a positive 

relationship between frustration and learning, which should be 

investigated further. These findings are clearly not yet conclusive, 

representing just a single online learning environment; but the 

methodological step that they represent – enabling analysis of 

affect that is both longitudinal and fine-grained, in the service of 

understanding the relationships between affect and learning – is a 

potentially valuable step. The data set produced through the 

application of these detectors is amenable to considerable further 

analysis of the ways that the context of affect influences learning. 

This will be a productive and valuable area for future work.  

Overall, these findings may be useful in the design of reporting on 

student behavior and affect for teachers using systems like the 

ASSISTments system. When reporting on student boredom and 

confusion, it will be important to report context as well. For 

example, it may be useful to recommend interventions to teachers 

if a student is bored or confused on original questions, but not if 

these affective states occur during scaffolding. We see this work 

as leading in the direction of better support for teachers on 

intervening based on students’ affect. Real time integration of 

affect detection into a teacher’s tutor dashboard along with an 

expanded understanding of the conditions that can make an 

affective state constructive or not, could greatly assist a teacher in 

signaling when to intervene in a crowded classroom. 
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