Examining the Depth Dimension of Scale for the GEAR-Tech-21 Project

NSF ITEST Summit 2010

Presenters

- Dr. Bradley S. Barker, 4-H Science and Technology Specialist
 - Email: bbarker@unl.edu
- Dr. Neal Grandgenett, Professor of Mathematics Education
 - Email: ngrandgenett@unomaha.edu
- Dr. Gwen Nugent, Research Associate Professor, Nebraska Center for Research on Children, Youth, Families, and Schools
 - Email: gnugent1@unl.edu

Funding provided by the National Science Foundation Award Number DRL-0833403

Presentation Overview

- Brief Background of Nebraska's 4-H Robotics GPS/GIS ITEST project
- Scale-up Dimensions
- Scaling for Depth
- Open Discussion

What We Are Doing

- National 4-H robotics program
 - Includes the integration of robotics
 with geospatial technologies
 (GIS, GPS, aerial photography).
 - Looking at applications in precision agriculture and natural resources.
 - On-line curriculum and resources
 - @ 4hset.unl.edu/itest

Scale-up plans

- Scale-up project for national audience
 - Develop new educational robotics kit with integrated GPS and open source programming environment.
 - Continue to examine cognitive and attitudinal impacts.
 - Developed plan based on the scaling framework (Dede & Coburn, 2003).

Scale-up Framework Review

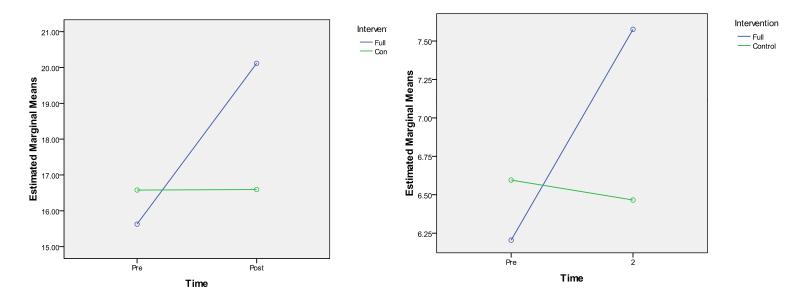
- Five dimensions of scale
 - Depth (deep and transformative change)

- Sustainability (maintain changes over time)
- Spread (increase users, decrease resources and expertise at the project level)
- Shift (ownership shifts to users)
- Evolution (learn from users, adaptations)
- Within each dimension examine considerations:
 Power of dimension, Traps to avoid, Role of technology, Next steps to explore

Dimension of Scale (Depth)

- Project will address the critical need to improve STEM education and to prepare youth for STEM and IT careers.
- Power of Dimension: (Evaluation and Research)
 - Examine impact on youth learning and attitudes
 - Longitudinal survey for STEM courses taken
 - Pre/Post 21st Century Skills evaluation instrument
 - Examine impact of informal educator training

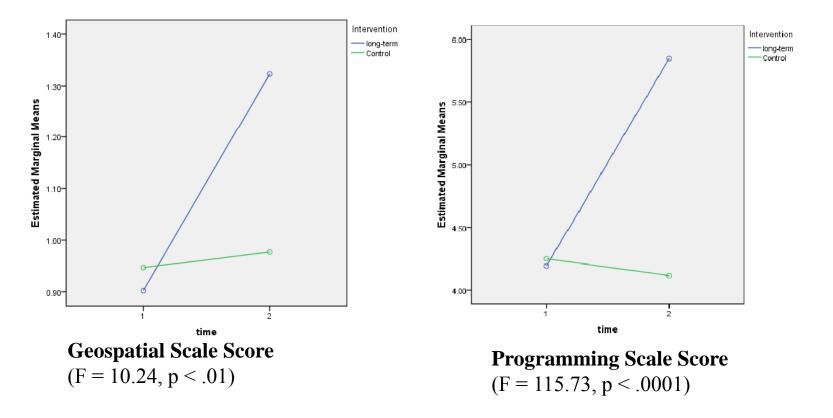
- What is the impact of an intensive week-long robotics/geospatial technologies summer camp (*full intervention*) and short 3-hr. introduction (*short-term*) on youth STEM learning and attitudes?
- Research Design: quasi-experimental research design with a between-group comparison between the treatment group (full intervention) and either the control or short-term intervention group.


Short-term/control group intervention	O ₁	O ₂	X	O ₃
Full intervention	O ₁		X	O ₂

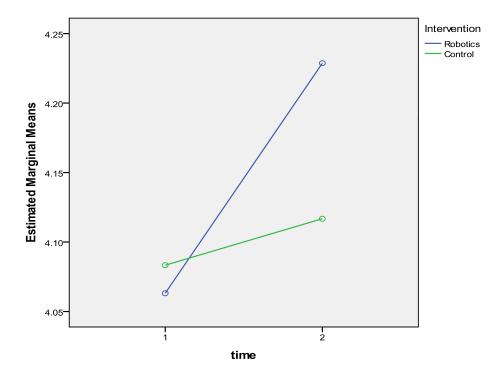
Control Group Strategy Used

- Asked Educational Service Units to help
- Invited teachers to select several youth (with a diversity in ethnicity/gender/ability)
- Took pre-post assessments with no intervention
- After assessments the control group treated to 3-hr. robotics event with many activity stations
- Students then took the posttest again
- Resulted in good control participation (N=141)
- Schools now asking to be involved

• Learning Results

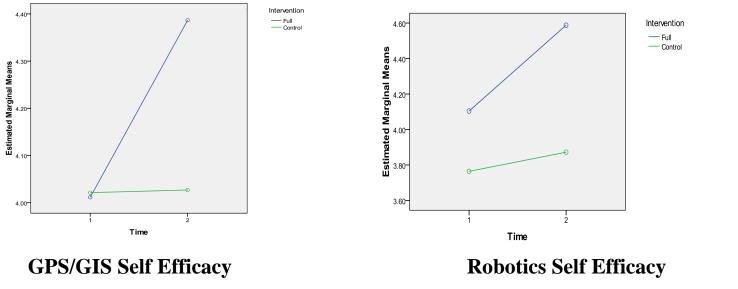

Overall Learning Score (Wilk's $\Lambda = .72$, F(1, 268) = 102.20, p < .0001)

(Wilk's $\Lambda = .88$, F(1, 261) = 35.29, p < .001)



• Learning Results

• Attitude Results



Overall Attitude Score (F(1, 256) = 10.45, p < .001).

• Attitude Results

Increases in robotics and GPS/GIS self-efficacy scores had greatest effect on overall attitude score.

(Wilk's $\Lambda = .92$, F(1, 249) = 20.84, p < .0001) (Wilk's $\Lambda = .92$, F(1, 249) = 20.21, p < .0001)

• Comparison of Full and Short-term Intervention

Outcome	Full (Post)	N	Short-term (Post) Mean	N	F	Effect Size	Significance
	Mean					Partial η ²	
Total Attitude (5- point scale)	4.23	134	4.34	124	7.49	.03	P < .01
Task Value							
Science	4.20	134	4.33	124	5.89	.02	P < .05
Math	4.15	134	4.43	124	4.72	.02	P < .05
Robotics	4.41	134	4.55	124	12.86	.05	P < .0001
GPS/GIS	4.11	134	4.27	124	7.32	.03	P < .01
Self-efficacy							
Robotics	4.59	130	4.34	123	130.86	.34	P < .0001
GPS/GIS	4.39	130	4.40	123	.01	.00	P = .93
Teamwork	4.08	130	4.40	123	8.37	.03	P < .01
Problem	3.96	134	4.26	123	8.30	.03	P < .01
Approach							
Cognitive	20.12	137	16.81	132	126.43	.32	P<.0001

Discussion

- Week-long robotics intervention resulted in significantly higher learning compared to a control group and short-term intervention
 - An intensive robotics instructional program can support the learning of challenging STEM concepts and processes.
- Week-long intervention resulted in higher STEM attitudes compared to a control group.
- Youth in short-term intervention had significantly higher STEM attitudes than those in the week-long intervention
 - Possibly due to highly engaging and motivating activities, with limited cognitive load.

- Professional Development: Informal educators (n = 80 from four states)
- Significant improvement in confidence in their robotics and GPS/GIS abilities and their ability to facilitate a youth-based STEM program.
- No significant improvement in their knowledge of robotics and GPS/GIS.

Dimension of Scale (Depth)

- Traps to Avoid: (Perfection)
 - Not all youth will pursue STEM courses and careers – this should not be seen as a failure.
- Role of Technology: (Computers and Telecom)
 - Technology will be used to assist learning
 - Developing interactive media for on-line delivery (4hset.unl.edu) using Drupal CMS.

Next Steps to Explore

- Developed longitudinal instrument to determine if GEAR-Tech-21 program influenced STEM courses taken.
 - Did program have influence on education choices.
 - List courses taken and courses they will take.
 - Asked potential college major and possible careers.
- Embedded assessments will be designed to focus upon specific concepts at key learning points throughout the experience.

Next Steps to Explore

- Evaluate Robotics Competitions
 - Examine learning and attitudes from robotics FLL and CEENBoT competitions (pre to post).
 - Survey parents to determine support of their child's involvement in STEM.
- Examine issues of fidelity of implementation
 - How is program implemented after training.
 - Survey and observational instruments to be developed.

Summary

- Examined depth dimension of scale as it applies to the 4-H robotics and GPS/GIS project.
- Major efforts in research and evaluation to determine effectiveness of program.
- Next steps include, researching adult training and fidelity of implementation issues, embedded assessments in the curriculum, and evaluation of competitions.

A final quote following questions...

"We have not succeeded in answering all of your problems. The answers we have found only serve to raise a whole set of new questions. In some ways, we feel we are as confused as ever, but we believe we are confused on a higher level and about more important things."

Omni Magazine, 1992

SLIDE DESIGN © 2007. BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA. ALL RIGHTS RESERVED.