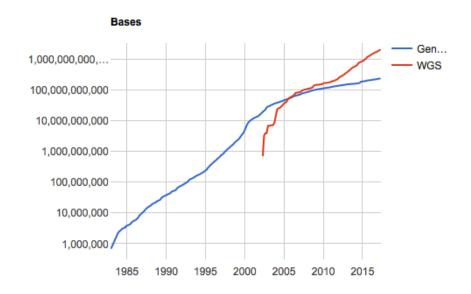
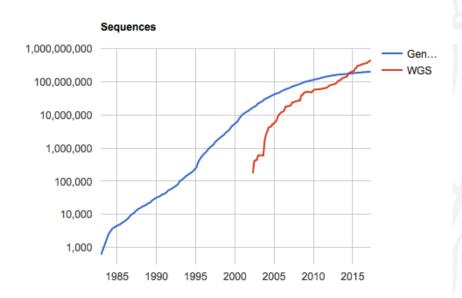
THE WESTERN NEW YORK GENETICS IN RESEARCH PARTNERSHIP

Expanding Exposure, Career Exploration and Interactive Projects in Basic Genome Analysis and Bioinformatics
Stephen Koury, P.I.




How is our project related to big data?

The size of the Genbank database of genomic information has increased dramatically over the last 35 years.

https://www.ncbi.nlm.nih.gov/genbank/statistics/

GenBank and WGS Statistics

Making sense of all of the genomic data

"....because genomics poses unique challenges in terms of data acquisition, distribution, storage, and especially analysis, waiting for innovations from outside our field is unlikely to be sufficient. We must face these challenges ourselves, starting with integrating data science into graduate, undergraduate, and high-school curricula to train the next generations of quantitative biologists, bioinformaticians, and computer scientists and engineers"

Taken from: Big Data: Astronomical or Genomical? Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, Gene E. Robinson Published: July 7, 2015https://doi.org/10.1371/journal.pbio.1002195

The STEM-related goals of the project are to:

- allow high school students and teachers to participate in scientific research
- stimulate the interest of students in pursuing careers in science and technology through the use of a unique, interactive learning environment combined with intensive support intervention (GENI-ACT)
- encourage teachers to include bioinformatics and genomics in their curriculum.
- Project website:

http://ubwp.buffalo.edu/wnygirp

ITEST Project Overview:

- A week long summer training workshop for teachers (30 per year) to learn the fundamentals of gene annotation using the GENI-ACT system (along with 3 additional subsequent refresher training days).
- 3 fall semester activities to build interest among student participants and to recruit students to participate in the spring semester genome annotation exercises.
- Spring semester teacher guided genome annotation projects for 5 or more students per teacher (150 total per year). A control group of students is included for comparison.
- A capstone symposium for student and teacher participants to present the results of their genome annotations
- 4th Year No-Cost Extension: Teachers with one year of training were supported for a second year to set up their own GENI-ACT courses to use independently with students going forward.

What is GENI-ACT?

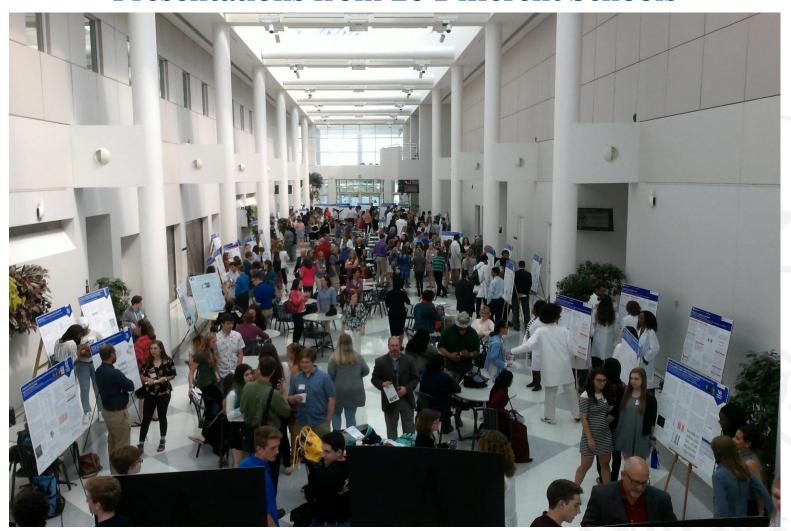
[]geni-act

GENI-ACT allows collaborative genome annotation. Researchers or students can collectively suggest changes to an existing genome with supporting evidence. Changes can be ported back to genbank by exporting to a sequin file format.

GENI-ACT also has ported the education components from IMG-ACT. Teachers can assign students work to be completed in a lab notebook that is integrated with the classroom.

2775 genomes available

Sign Up Login


Browse Genomes

Available Modules	
Basic Information	 DNA Coordinates: Use a <u>GENE Page</u> to enter coordinates Nucleotide Sequence / Length: Use a <u>GENE Page</u> to find the Nucleotide Sequence and Length Protein Sequence / Length: Use a <u>GENE Page</u> to find the Protein Sequence and Length
Sequence-based Similarity Data	 BLAST: Find the top hits in BLAST using NCBI BLAST CCD: Find COG Results from NCBI BLAST T-Coffee: Run a multiple sequence alignment using T-Coffee WebLogo: Find the sequence logo and analyze it
Cellular Localization Data	 Gram Stain: Research Pubmed to find the gram stain of the organism TMHMM: Plot the transmembrane topology SignalP: Plot the signal peptide graph LipoP: Predict lipoproteins and signal peptides PSORT-B: Predict protien localization Phobius: Plot the phobius posterior probabilities
Alternative Open Reading Frame	DNA Coordiantes: Change the DNA Coordinates if the ORF has been incorrectly determined

Jacobs School of Medicine and Biomedical Sciences University at Buffalo

Structure-based Evidence	TIGRFAM: Search TIGRFAM Hidden Markov Model database for hits Pfam: Find Pfam families within a sequence PDB: Align sequences using Protein Data Bank
Enzymatic Function	KEGG: Find the KEGG Pathway and analyze the pathway map MetaCyc: Find the Metabolic Pathway and analyze EC Number: Use ExPASy ENZYME to locate the EC number and name
Duplication and Degradation	Paralogs: Use NCBI BLAST to find paralogs Pseudogene: Research to find if the gene is a pseudogene
Horizontal Gene Transfer	 Phylogenetic Tree: Use Phylogeny.fr to plot the phylogenetic tree from sequences Gene Context: Find the Ortholog Neighborhood Region using IMG Chromosome Viewer GC Heat Map: Analyze the GC heat map to find the characteristic and average GC%
RNA	Rfam: Find the Rfam number, score and pairwise alignment
Proposed Annotation	Note: Propose a new annotation to be placed in the note section of GENI-ACT and Genbank GBK

2017 Capstone Symposium – 48 ITEST Poster Presentations from 26 Different Schools

