Use of 3D Virtual World Technology for STEM Learning

2010 ITEST Summit

STEM and ICT Instructional Worlds: The 3D Experience (STEM-ICT 3D)_

Who is involved?

What are we doing?

http://www.stem-ict-3d.org/

Video Created by Technology Education Interns

Lori Holton

Josh Shelton

Why are we doing this?

Educational Gains

- Students exhibited gains in engagement, efficacy, achievement (Barab, et al, 2005; Educause, 2006; Ketelhut, et al, 2006)
- Statistically significant effect of 3D virtual environments on both achievement in and attitude toward science (Kim, 2006)
- Significant shift from individualized to peer-based/peer-assisted learning with technology during the course of a pilot project. Teachers noted they had to "step back" as the students became the technical experts. (Sanders et al, 2008)

Expanded Opportunities

- ability to provide experiences which may not be available in real life
- resources to analyze phenomena from different points of view
- capability to work with virtual companions distributed over different geographical locations (Chittaro and Ranon 2007)

Overview

Three Themes:

- Recruiting Students and Teachers
- Delivering the Workshops
- 3. Implementing in Schools

Evaluation and Instruments:

External Evaluator: EvAP (UNC-Chapel Hill)

- Attitude of Middle School Students Toward STEM (MARS)
- 2. Student Workshop Questionnaires
- 3. Professional Development Questionnaires
- 4. Teacher Focus Groups

(MARS validated through NSF #EEC-060240)

Students

- 24 students from four school districts recruited
 - Recruitment process determined by districts
 - Process varied greatly
 - Provided general guidelines for selection of students
- Students recruited up through the week before the program's start

Teachers

- 24 teachers recruited through relationships within school districts
- Contact with teachers a week before the program

Key Findings: Students

More consideration of students being chosen

- Some students not as committed to the program (Workshop Survey)
- Choose students with high test scores, [but] low grades- students more willing to take risks; make mistakes (Focus Groups)
- G & T students frustrate easily/risk-averse (Focus Groups)
- Schools were given different guidelines for choosing students (Focus Groups)

Changes to the program:

Developed "Selection Rubric" for year 2 student cohort selection

Student Characteristics - Selection Rubric

- Demonstrates leadership potential
- Accepts responsibility
- Actively participates in his/her learning
- Self-motivated
- Self-starter
- Demonstrates ability to work with adults in a teaching/learning environment
- Demonstrates ability to work with students in a teaching/learning environment
- Keeps an open mind
- Displays a desire to learn
- Demonstrates aptitude in technology, science, and math
- Displays interest in technology, science, and math
- Adopts an exploratory and investigative approach when using technology

Key Findings: Teachers

Teachers need better pre-workshop preparation

- Not all teachers comfortable with technology- experienced frustration (Focus Groups)
- Did not know anything about virtual world before training (Workshop Survey and Focus Groups)
- Wanted additional training or introduction before summer or before meeting with students (Workshop Survey and Focus Groups)

Changes to the program:

- Teachers selected in fall
- Teachers attend orientation in January

Students

- Collaborated across sites on "suites" using ICT tools, Google Sketchup, Teleplace and others
- Attended multiple STEM field trips/demonstrations on campuses
- Collaborated with teachers to build instructional worlds

<u>Teachers</u>

- Learned about "presence pedagogy"
- Developed skill with building in 3D
- Implemented P2 in 3D learning units

Students Worlds – Wild Kingdom

Students Worlds – Outer Space

Key Findings: Students

96% Learned a "huge amount" or "a lot" about collaboration
Significant increase from pre to post attitudes in these STEM areas (MARS):

- My math classes are preparing me for an engineering major in college (\underline{p} =.012)
- Comfort level with computer skills including:
 - Formatting a text document (\underline{p} =.024); Importing/exporting still images (\underline{p} =.008)
 - Creating and updating a blog (\underline{p} =.040); Using an on-line 3D virtual environment (\underline{p} <.000)
- Significant decrease from pre- to post-test on responses to:
 - My middle school classes are preparing me for college (\underline{p} =.035)

Changes to program:

- Maintain core curriculum
- Incorporate more experiences with STEM experts

Student and Teacher Created Worlds –
Series of Unfortunate Events

Student and Teacher Created Worlds –
Oconee Pickens Speedway

Key Findings: Teachers

Substantial learning about using 3D Pedagogy

- 77% reported that they learned "a lot" or "a huge amount" about being able to work with students (Final Workshop Survey)
- 86% of the teachers reported gaining a greater understanding of the pedagogical strategies that can be used for teaching in 3D (Final Workshop Survey)
- Teachers who teamed with other teachers expressed that this was positive (Focus groups)
- Instructors and 3D Modeler/Programmer were helpful resources (Focus Groups)
- Wanted additional training or introduction before the summer (Focus Groups)

Key Findings: Teachers

Changes to program:

- Teachers participate 3 pre-workshop professional development sessions
- Developing more opportunities for teachers to interact with each other
- Providing additional student instruction on teaching others

Theme 3: Implementing

Students

 Assisted teachers in limited classroom implementations

Teachers

- 4 have demonstrated on large computer or smart board
- > 3 teachers have used in lab with class of students
- 1 using Google-Sketch up because of server/connectivity issues with QWAQ
- Three follow-up sessions so far: two online one face to face

District

- IT support brought 'on board' in each district
- "mini-tech conference" scheduled in March for district IT staff on implementation and technical issues

Theme 3:Implementing

Key Findings: Students

Students have had limited involvement

- Trained students were able to demonstrate when classes were not able to log-in
- Students are disappointed when technology doesn't work

Changes to program:

- Involve students in recruiting
- Students will provide tours/intro/basic Teleplace overview for ASU faculty
- Encourage teachers to develop plan for student engagement
- Create student showcase

Theme 3:Implementing

Key Findings: Teachers

Technology must be easy

- Seven expressed interest in using the technology in the future
- District-level server issues; Concerned that technology won't work when they need it to
- Some districts don't allow students to have email addresses
- Limited access to computers with software loaded
- Only allows 24 students in when most teachers have more than that

Changes to the program:

- The project must have champions both at the school level and at the district level. At the district level, need both instructional and technological champions.
- Individualized teacher follow-up professional development on technology (3D Modeler) and on pedagogy (Teacher Expert)

Discussion

References

- ▶ Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making learning fun: Quest Atlantis: A game without guns. *Educational Technology Research and Development (53)*1. 86-107.
- Chittaro, L. and Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. omputers & Education (49), 3-18.
- ▶ Educause.(2006). *SciFair: Game worlds for learning*. Retrieved September 23, 2009, from http://www.educause.edu/ir/library/pdf/ELI5010.pdf
- ▶ Ketelhut, D. J., Dede, C., Clarke, J., & Nelson, B. (2006). *A multi-user virtual environment for building higher order inquiry skills in science*. Paper presented at the American Educational Research Association, San Francisco, CA.
- ▶ Kim, P. (2006). Effects of 3D virtual reality of plate tectonics on fifth grade students' achievement and attitude toward science. *Interactive Learning Environments* (14)1. 25-34.
- Sanders, R., Bronack, S., Riedl, R., Cheney, A., Matzen, N., Rhyne, S., Marklin, J., & Rooney, B. (2008, March). The digital native best practice design project. Presentation at the Teaching and Learning with Technology Conference, Raleigh, NC.