

Design-based Research: A Framework for Designing and Sustaining Novel Teaching and Learning Experiences in K-12 Engineering Education

Beverly Parsons Tirupalavanam G. Ganesh

Design-based Research

the educational challenge is an **engineering design challenge**

- Design-based research methodology for understanding how, when, and why educational innovations work in practice
- ▶ Research in K-12 engineering education is an **iterative process** akin to that in the design-based research efforts in education (Barab & Squire, 2004; Design-Based Research Collective, 2003; Kelly, Lesh, & Baek, 2008)

Barab, S., & Squire, K. (eds) (2004). Design-based research: Clarifying the terms. *Journal of the Learning Sciences*, 13 (1). Design-based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. *Educational Researcher*, 32(1), 5-8.

Kelly, A. E., Lesh, R. A., Baek, J. H. (2008). Handbook of design research methods in education: Innovations in Science, Technology, Engineering and Mathematics learning2

Learning through Engineering design and Practice (LEAP)

- Design-based research Exploring possibilities for novel learning and teaching environments
- Views the design of the engineering education experience and its specific enactments as objects of research
- Grounded in **needs**, **constraints**, **and interactions** of local contexts
- Leads to eventual development of robust explanations of practice in context
- Provides principles that can be localized for others to apply
- Lays groundwork for education innovation

million

3

Learning through Engineering design and Practice (LEAP)

- NSF ITEST Project funded September 2007, \$1.08
- Collaborative effort with multiple disciplinary experts
- Four middle-school sites; after-school program offered for two cohorts; cohorts experience the program beginning in their 7th grade
 - Cohort 1 (2007-09): Carson and Powell Jr High Schools
 - Cohort 2 (2008-10): Mesa and Smith Jr High Schools
- Field-testing in Mesa Arts Academy--Charter School as an in-school program and the Boys and Girls Club of

LEAP: Project Philosophy

The idea of **low floors** (easy for novices to get started) and **wide walls** (possible for learners to gain expertise

and work on increasingly sophisticated projects)

- Ensure that learners are free to explore materials and resources of their own interest
- Ensure that there is no single correct solution to the challenge; instead there could be many possible solutions
- Ensure that there is **no mystery about assessment**
- Place the technological tools used in the learning experiences in the hands of students: to take home, keep, explore at leisure

5

LEAP: Influences that shaped Project Design Principles

Project Design Principles

- Learner centered Instruction: Problem-based Learning / Project-based Approach
- Instructional Planning: The Learning Cycle-5E Model (Engage, Explore, Explain, Evaluate, Elaborate)
- Learning in Context: Cognitive Apprenticeship
- Tools: Construction Kits (e.g., PICO Cricket Kits, Lego Mindstorms NXT, Electrical Circuit kits, Graphing Calculator Robots, Vernier Probeware, Hydrogen fuel cell kits) and found objects
- Other Tools: Vocabulary Word Walls, Personal white boards/dry erase markers, Engineering notebooks

LEAP: Novel Learning Experiences

Desert Tortoise Unit

- Challenge: Design and build a simulation of a deserttortoise's (Gopherus Agassizii) behavior and its habitat
- Resources: Lego Mindstorms NXT kit, NXT software, additional Lego parts, Phoenix Zoo, AZ Game and Fish, Botanist, Herpetologist, Reference materials, Books, Internet sites
- Materials incorporated into the project as the student work evolved: found objects, plants, soil, rocks, water, raven sounds, black construction paper, toys (e.g., representing humans, buildings)

7

LEAP: Desert Tortoise Unit

- ▶ Challenge: Design and build a simulation of a deserttortoise's (Gopherus Agassizii) behavior and its habitat
- Adult and baby desert tortoises were brought to the classroom
- ▶ Students went on a field trip to the Phoenix Zoo's Sonoran Desert Trail; visited the desert tortoise exhibit
- Interacted with a herpetologist and a botanist
- ▶ Print resources (Brennan & Holycross, 2006; Phoenix Zoo Newsletter on the Desert Tortoise)
- ▶ Byrd Baylor's books: *The Desert is Theirs*, Macmillan, 1975, and *Desert Voices*, Macmillan, 1981

LEAP: Desert Tortoise Unit Embedded Assessment

list items that can be found in the habitat of a desert tortoise.

- 2. Your friend doesn't really know what a desert tortoise looks like. Help your friend by listing physical features of a desert tortoise.
- 3.Before your friend goes out to look for a desert tortoise, you have decided to give her some information. Complete these sentences:

1.	A desert	tortoise	gets	water	by	
----	----------	----------	------	-------	----	--

- 2. A desert tortoise digs a burrow with _____
- 3. A desert tortoise uses a burrow to
- 4. In its natural habitat, a desert tortoise eats _____
- 4. You have been asked to build a robot that acts like a desert tortoise. List the actions the robot should perform to act like a desert tortoise?
- 5.List the components (parts) your robot needs so that it can act

LEAP: Future Directions

Design-Based Research

- ▶ Refine novel K-12 engineering learning and teaching experiences
- Field-test novel K-12 engineering learning and teaching experiences in formal and informal settings; greater professional development for teachers
- Identify principles that define the novel experiences in specific contexts; Identify mechanisms that underlie the success of these novel teaching and learning experiences
- Conduct feasibility studies in different settings (rural, urban, suburban, formal, informal)
 - Eventually lead to innovations in STEM Education Sloane (2008) Table 1 (p 628)--focus on early phases leading to efficacy trials
- Sloane, F. C. (2008, December). Randomized trials in Mathematics Education: Recalibrating the Proposed high watermark. *Educational Researcher*, 37(9), 624-630.

LEAP: External Evaluation Design

Confirmation of Effectiveness; Scale-Up

Greater use of curriculum within school system Focus on School System: Interest and Capacity to use the Curriculum

Issues: Financial and political support of district leadership; Nature of professional development needed Building of infrastructure and teaching capacity

 Transfer of curriculum to Charter School, Boys and Girls Clubs

Focus on different population of students, competing activities for students, relationship of clubs to community and parents

Evaluation: Use of systems thinking and attending to systems dynamics

11

LEAP: External Evaluation Design

Sustainability

- Program Sustainability--continued in the school district beyond the life of the grant
- Sustainability of learning of participating students
- Sustainability of collaborations: How collaborations can continue to spur other innovations over time
- Sustainability of teaching capacity: Means of embedding teaching methods through district professional development to sustain capacity to use project curriculum

LEAP: External Evaluation Design

Fundamental Conceptual Shifts

- A key part of determining effectiveness, scalability, and sustainability involves attention to fundamental conceptual shifts.
- Shift from teacher-directed de-contextualized learning to student-engaged project-based learning
- Shift from fixed skills and knowledge as learning outcomes to desired outcomes that: students are actively engaged; develop capacity to explore and figure things out; use engineering design principles (i.e., iterate, understand impact of constraints and availability of resources)

13

Key Questions

- How can OST STEM programs design and implement their interventions to address sustainability?
- With the high concentration on accountability, how can project-based learning using 21st century technologies sustain innovation and innovative instruction in public schools to ultimately impact policy?
- How can OST STEM programs research and evaluate their interventions to address sustainability?

Key Questions

- Consider at least the following aspects of sustainability:
- building bridges between after-school and in-school instruction and curriculum
- designing curriculum and instruction models that can be transferred to other OST setting
- sustaining the interest of students in STEM beyond the life of the program