

Collaborative Digital Bioscience Career Awareness Curriculum and Teacher Professional Development

Berri Jacque

Our overarching goal

Increase performance, engagement and career awareness

by

Bringing authentic liferelevant science into the classroom

How? By partnering teachers with scientists

Bridging the bioscience STEM gap: challenges

- Building career awareness, interest and goal setting
- Building competencies teamwork and critical thinking in the context of biosciences
 - Formulating questions
 - Designing experiments
 - Interpreting data

Integrating career awareness and experimental design by collaborative digital case study learning

1) Create teams and assign roles of actual bioscience careers

Integrating career awareness and experimental design by collaborative digital case study learning

2) Each team then participates in an HIV drug design project that spans:

Joint development and PD by collaborative curriculum design

Scientists

Novel content knowledge, evidence-based reasoning, authentic scientific practice "know-how"

Teachers

Pedagogical content knowledge, assessments, direct relationship with students

Increased Student Outcomes expectations, Self Efficacy STEM Career Interest and Goals

Joint development and PD by collaborative curriculum design

Year		
1	2	3
6 Co-design teacher partners: Boston (4),	Classroom Pilots	Classroom Pilots
Brookline, Medford MA	Reflect and re-design	Design New Case Topics
	Training teacher	
Design and Pilot at Tufts	cohort 2 at Tufts	Training teacher cohort 3 at Tufts
	Student led interviews	
Student led interviews		Student led interviews

Reflect and re-design

PD by Modeling for Fidelity

- <u>Best practices</u> for teacher professional development:
 - Extended duration
 - Contextualized rich in content
 - Sustained mentor interactions

Modeling for Fidelity supports and training:

- Downloadable materials
- In person trainings
- Online trainings
- Real-time mentoring

How do we measure success?

High School Students	 Performance: Content mastery, problem solving Engagement Attitudes, self efficacy – (Health Literacy) Career awareness Efficacy, outcomes expectations
Teachers	 Content knowledge Content mastery, problem solving Career awareness Efficacy, outcomes expectations towards students Confidence Teaching efficacy Change in classroom practices Self-reporting of practices, observation
Scientists	 1. Knowledge of teaching Inquiry based pedagogical approaches Curriculum design and evaluation 2. Training of Scientist Educators

Questions and thoughts?

http://sites.tufts.edu/greatdiseases/

Supporting students in designing experiments and interpreting data: <u>QMDC</u>

	Experimental Design	Communication
Q uestion	What question do you want to address?	What question does the experiment address?
<u>M</u> ethod	What method(s) can you use?	What method(s) are used?
<u>D</u> ata	Predict what your data will look like.	Describe the data.
<u>C</u> onclusion	What conclusions can you draw from your predictions?	What conclusions can you draw from the data?